Building an Optimizing Compiler


Book Description

Building an Optimizing Compiler provides a high-level design for a thorough optimizer, code generator, scheduler, and register allocator for a generic modern RISC processor. In the process it addresses the small issues that have a large impact on the implementation. The book approaches this subject from a practical viewpoint. Theory is introduced where intuitive arguments are insufficient; however, the theory is described in practical terms. Building an Optimizing Compiler provides a complete theory for static single assignment methods and partial redundancy methods for code optimization. It also provides a new generalization of register allocation techniques. A single running example is used throughout the book to illustrate the compilation process.




Modern Compiler Implementation in C


Book Description

This new, expanded textbook describes all phases of a modern compiler: lexical analysis, parsing, abstract syntax, semantic actions, intermediate representations, instruction selection via tree matching, dataflow analysis, graph-coloring register allocation, and runtime systems. It includes good coverage of current techniques in code generation and register allocation, as well as functional and object-oriented languages, that are missing from most books. In addition, more advanced chapters are now included so that it can be used as the basis for a two-semester or graduate course. The most accepted and successful techniques are described in a concise way, rather than as an exhaustive catalog of every possible variant. Detailed descriptions of the interfaces between modules of a compiler are illustrated with actual C header files. The first part of the book, Fundamentals of Compilation, is suitable for a one-semester first course in compiler design. The second part, Advanced Topics, which includes the advanced chapters, covers the compilation of object-oriented and functional languages, garbage collection, loop optimizations, SSA form, loop scheduling, and optimization for cache-memory hierarchies.




Engineering a Compiler


Book Description

This entirely revised second edition of Engineering a Compiler is full of technical updates and new material covering the latest developments in compiler technology. In this comprehensive text you will learn important techniques for constructing a modern compiler. Leading educators and researchers Keith Cooper and Linda Torczon combine basic principles with pragmatic insights from their experience building state-of-the-art compilers. They will help you fully understand important techniques such as compilation of imperative and object-oriented languages, construction of static single assignment forms, instruction scheduling, and graph-coloring register allocation. - In-depth treatment of algorithms and techniques used in the front end of a modern compiler - Focus on code optimization and code generation, the primary areas of recent research and development - Improvements in presentation including conceptual overviews for each chapter, summaries and review questions for sections, and prominent placement of definitions for new terms - Examples drawn from several different programming languages




The Compiler Design Handbook


Book Description

The widespread use of object-oriented languages and Internet security concerns are just the beginning. Add embedded systems, multiple memory banks, highly pipelined units operating in parallel, and a host of other advances and it becomes clear that current and future computer architectures pose immense challenges to compiler designers-challenges th




Compilers


Book Description

Software -- Programming Languages.




Advanced Compiler Design Implementation


Book Description

Computer professionals who need to understand advanced techniques for designing efficient compilers will need this book. It provides complete coverage of advanced issues in the design of compilers, with a major emphasis on creating highly optimizing scalar compilers. It includes interviews and printed documentation from designers and implementors of real-world compilation systems.




A Systolic Array Optimizing Compiler


Book Description

This book is a revision of my Ph. D. thesis dissertation submitted to Carnegie Mellon University in 1987. It documents the research and results of the compiler technology developed for the Warp machine. Warp is a systolic array built out of custom, high-performance processors, each of which can execute up to 10 million floating-point operations per second (10 MFLOPS). Under the direction of H. T. Kung, the Warp machine matured from an academic, experimental prototype to a commercial product of General Electric. The Warp machine demonstrated that the scalable architecture of high-peiformance, programmable systolic arrays represents a practical, cost-effective solu tion to the present and future computation-intensive applications. The success of Warp led to the follow-on iWarp project, a joint project with Intel, to develop a single-chip 20 MFLOPS processor. The availability of the highly integrated iWarp processor will have a significant impact on parallel computing. One of the major challenges in the development of Warp was to build an optimizing compiler for the machine. First, the processors in the xx A Systolic Array Optimizing Compiler array cooperate at a fine granularity of parallelism, interaction between processors must be considered in the generation of code for individual processors. Second, the individual processors themselves derive their performance from a VLIW (Very Long Instruction Word) instruction set and a high degree of internal pipelining and parallelism. The compiler contains optimizations pertaining to the array level of parallelism, as well as optimizations for the individual VLIW processors.




The Compiler Design Handbook


Book Description

Today’s embedded devices and sensor networks are becoming more and more sophisticated, requiring more efficient and highly flexible compilers. Engineers are discovering that many of the compilers in use today are ill-suited to meet the demands of more advanced computer architectures. Updated to include the latest techniques, The Compiler Design Handbook, Second Edition offers a unique opportunity for designers and researchers to update their knowledge, refine their skills, and prepare for emerging innovations. The completely revised handbook includes 14 new chapters addressing topics such as worst case execution time estimation, garbage collection, and energy aware compilation. The editors take special care to consider the growing proliferation of embedded devices, as well as the need for efficient techniques to debug faulty code. New contributors provide additional insight to chapters on register allocation, software pipelining, instruction scheduling, and type systems. Written by top researchers and designers from around the world, The Compiler Design Handbook, Second Edition gives designers the opportunity to incorporate and develop innovative techniques for optimization and code generation.




Compiler Construction


Book Description

This book constitutes the refereed proceedings of the 15th International Conference on Compiler Construction, CC 2006, held in March 2006 as part of ETAPS. The 17 revised full papers presented together with three tool demonstration papers and one invited paper were carefully reviewed and selected from 71 submissions. The papers are organized in topical sections.