Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism


Book Description

This is the only book discussing multifractal properties of densities of stable superprocesses, containing latest achievements while also giving the reader a comprehensive picture of the state of the art in this area. It is a self-contained presentation of regularity properties of stable superprocesses and proofs of main results and can serve as an introductory text for a graduate course. There are many heuristic explanations of technically involved results and proofs and the reader can get a clear intuitive picture behind the results and techniques.




Probability in Complex Physical Systems


Book Description

Probabilistic approaches have played a prominent role in the study of complex physical systems for more than thirty years. This volume collects twenty articles on various topics in this field, including self-interacting random walks and polymer models in random and non-random environments, branching processes, Parisi formulas and metastability in spin glasses, and hydrodynamic limits for gradient Gibbs models. The majority of these articles contain original results at the forefront of contemporary research; some of them include review aspects and summarize the state-of-the-art on topical issues – one focal point is the parabolic Anderson model, which is considered with various novel aspects including moving catalysts, acceleration and deceleration and fron propagation, for both time-dependent and time-independent potentials. The authors are among the world’s leading experts. This Festschrift honours two eminent researchers, Erwin Bolthausen and Jürgen Gärtner, whose scientific work has profoundly influenced the field and all of the present contributions.




Annales de l'I.H.P.


Book Description







Mathematical Reviews


Book Description







Branching Processes


Book Description

This volume presents the edited proceedings of the First World Congress on Branching Processes. The contributions present new research and surveys of the current research activity in this field. As a result, all those undertaking research in the subject will find this a timely and high-quality volume to have on their shelves.




A Minicourse on Stochastic Partial Differential Equations


Book Description

This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.




Lectures on Random Interfaces


Book Description

Interfaces are created to separate two distinct phases in a situation in which phase coexistence occurs. This book discusses randomly fluctuating interfaces in several different settings and from several points of view: discrete/continuum, microscopic/macroscopic, and static/dynamic theories. The following four topics in particular are dealt with in the book.Assuming that the interface is represented as a height function measured from a fixed-reference discretized hyperplane, the system is governed by the Hamiltonian of gradient of the height functions. This is a kind of effective interface model called ∇φ-interface model. The scaling limits are studied for Gaussian (or non-Gaussian) random fields with a pinning effect under a situation in which the rate functional of the corresponding large deviation principle has non-unique minimizers.Young diagrams determine decreasing interfaces, and their dynamics are introduced. The large-scale behavior of such dynamics is studied from the points of view of the hydrodynamic limit and non-equilibrium fluctuation theory. Vershik curves are derived in that limit.A sharp interface limit for the Allen–Cahn equation, that is, a reaction–diffusion equation with bistable reaction term, leads to a mean curvature flow for the interfaces. Its stochastic perturbation, sometimes called a time-dependent Ginzburg–Landau model, stochastic quantization, or dynamic P(φ)-model, is considered. Brief introductions to Brownian motions, martingales, and stochastic integrals are given in an infinite dimensional setting. The regularity property of solutions of stochastic PDEs (SPDEs) of a parabolic type with additive noises is also discussed.The Kardar–Parisi–Zhang (KPZ) equation , which describes a growing interface with fluctuation, recently has attracted much attention. This is an ill-posed SPDE and requires a renormalization. Especially its invariant measures are studied.




Nonlinear Markov Processes and Kinetic Equations


Book Description

A nonlinear Markov evolution is a dynamical system generated by a measure-valued ordinary differential equation with the specific feature of preserving positivity. This feature distinguishes it from general vector-valued differential equations and yields a natural link with probability, both in interpreting results and in the tools of analysis. This brilliant book, the first devoted to the area, develops this interplay between probability and analysis. After systematically presenting both analytic and probabilistic techniques, the author uses probability to obtain deeper insight into nonlinear dynamics, and analysis to tackle difficult problems in the description of random and chaotic behavior. The book addresses the most fundamental questions in the theory of nonlinear Markov processes: existence, uniqueness, constructions, approximation schemes, regularity, law of large numbers and probabilistic interpretations. Its careful exposition makes the book accessible to researchers and graduate students in stochastic and functional analysis with applications to mathematical physics and systems biology.