Regularized Image Reconstruction in Parallel MRI with MATLAB


Book Description

Regularization becomes an integral part of the reconstruction process in accelerated parallel magnetic resonance imaging (pMRI) due to the need for utilizing the most discriminative information in the form of parsimonious models to generate high quality images with reduced noise and artifacts. Apart from providing a detailed overview and implementation details of various pMRI reconstruction methods, Regularized image reconstruction in parallel MRI with MATLAB examples interprets regularized image reconstruction in pMRI as a means to effectively control the balance between two specific types of error signals to either improve the accuracy in estimation of missing samples, or speed up the estimation process. The first type corresponds to the modeling error between acquired and their estimated values. The second type arises due to the perturbation of k-space values in autocalibration methods or sparse approximation in the compressed sensing based reconstruction model. Features: Provides details for optimizing regularization parameters in each type of reconstruction. Presents comparison of regularization approaches for each type of pMRI reconstruction. Includes discussion of case studies using clinically acquired data. MATLAB codes are provided for each reconstruction type. Contains method-wise description of adapting regularization to optimize speed and accuracy. This book serves as a reference material for researchers and students involved in development of pMRI reconstruction methods. Industry practitioners concerned with how to apply regularization in pMRI reconstruction will find this book most useful.




Computer Science for Environmental Engineering and EcoInformatics


Book Description

This two-volume set (CCIS 158 and CCIS 159) constitutes the refereed proceedings of the International Workshop on Computer Science for Environmental Engineering and EcoInformatics, CSEEE 2011, held in Kunming, China, in July 2011. The 150 revised full papers presented in both volumes were carefully reviewed and selected from a large number of submissions. The papers are organized in topical sections on computational intelligence; computer simulation; computing practices and applications; ecoinformatics; image processing information retrieval; pattern recognition; wireless communication and mobile computing; artificial intelligence and pattern classification; computer networks and Web; computer software, data handling and applications; data communications; data mining; data processing and simulation; information systems; knowledge data engineering; multimedia applications.




Compressed Sensing for Engineers


Book Description

Compressed Sensing (CS) in theory deals with the problem of recovering a sparse signal from an under-determined system of linear equations. The topic is of immense practical significance since all naturally occurring signals can be sparsely represented in some domain. In recent years, CS has helped reduce scan time in Magnetic Resonance Imaging (making scans more feasible for pediatric and geriatric subjects) and has also helped reduce the health hazard in X-Ray Computed CT. This book is a valuable resource suitable for an engineering student in signal processing and requires a basic understanding of signal processing and linear algebra. Covers fundamental concepts of compressed sensing Makes subject matter accessible for engineers of various levels Focuses on algorithms including group-sparsity and row-sparsity, as well as applications to computational imaging, medical imaging, biomedical signal processing, and machine learning Includes MATLAB examples for further development




Fundamentals of Digital Image Processing


Book Description

This is an introductory to intermediate level text on the science of image processing, which employs the Matlab programming language to illustrate some of the elementary, key concepts in modern image processing and pattern recognition. The approach taken is essentially practical and the book offers a framework within which the concepts can be understood by a series of well chosen examples, exercises and computer experiments, drawing on specific examples from within science, medicine and engineering. Clearly divided into eleven distinct chapters, the book begins with a fast-start introduction to image processing to enhance the accessibility of later topics. Subsequent chapters offer increasingly advanced discussion of topics involving more challenging concepts, with the final chapter looking at the application of automated image classification (with Matlab examples) . Matlab is frequently used in the book as a tool for demonstrations, conducting experiments and for solving problems, as it is both ideally suited to this role and is widely available. Prior experience of Matlab is not required and those without access to Matlab can still benefit from the independent presentation of topics and numerous examples. Features a companion website www.wiley.com/go/solomon/fundamentals containing a Matlab fast-start primer, further exercises, examples, instructor resources and accessibility to all files corresponding to the examples and exercises within the book itself. Includes numerous examples, graded exercises and computer experiments to support both students and instructors alike.




Advances in Electronics, Communication and Computing


Book Description

This book is a compilation of research work in the interdisciplinary areas of electronics, communication, and computing. This book is specifically targeted at students, research scholars and academicians. The book covers the different approaches and techniques for specific applications, such as particle-swarm optimization, Otsu’s function and harmony search optimization algorithm, triple gate silicon on insulator (SOI)MOSFET, micro-Raman and Fourier Transform Infrared Spectroscopy (FTIR) analysis, high-k dielectric gate oxide, spectrum sensing in cognitive radio, microstrip antenna, Ground-penetrating radar (GPR) with conducting surfaces, and digital image forgery detection. The contents of the book will be useful to academic and professional researchers alike.




Principles of Magnetic Resonance Imaging


Book Description

In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co-authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.




Machine Learning for Medical Image Reconstruction


Book Description

This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 24 full papers presented were carefully reviewed and selected from 32 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography; and deep learning for general image reconstruction.




MRI


Book Description

This fifth edition of the most accessible introduction to MRI principles and applications from renowned teachers in the field provides an understandable yet comprehensive update. Accessible introductory guide from renowned teachers in the field Provides a concise yet thorough introduction for MRI focusing on fundamental physics, pulse sequences, and clinical applications without presenting advanced math Takes a practical approach, including up-to-date protocols, and supports technical concepts with thorough explanations and illustrations Highlights sections that are directly relevant to radiology board exams Presents new information on the latest scan techniques and applications including 3 Tesla whole body scanners, safety issues, and the nephrotoxic effects of gadolinium-based contrast media




Emission Tomography


Book Description

PET and SPECT are two of today's most important medical-imaging methods, providing images that reveal subtle information about physiological processes in humans and animals. Emission Tomography: The Fundamentals of PET and SPECT explains the physics and engineering principles of these important functional-imaging methods. The technology of emission tomography is covered in detail, including historical origins, scientific and mathematical foundations, imaging systems and their components, image reconstruction and analysis, simulation techniques, and clinical and laboratory applications. The book describes the state of the art of emission tomography, including all facets of conventional SPECT and PET, as well as contemporary topics such as iterative image reconstruction, small-animal imaging, and PET/CT systems. This book is intended as a textbook and reference resource for graduate students, researchers, medical physicists, biomedical engineers, and professional engineers and physicists in the medical-imaging industry. Thorough tutorials of fundamental and advanced topics are presented by dozens of the leading researchers in PET and SPECT. SPECT has long been a mainstay of clinical imaging, and PET is now one of the world's fastest growing medical imaging techniques, owing to its dramatic contributions to cancer imaging and other applications. Emission Tomography: The Fundamentals of PET and SPECT is an essential resource for understanding the technology of SPECT and PET, the most widely used forms of molecular imaging.*Contains thorough tutorial treatments, coupled with coverage of advanced topics*Three of the four holders of the prestigious Institute of Electrical and Electronics Engineers Medical Imaging Scientist Award are chapter contributors*Include color artwork




Spectral Computed Tomography


Book Description

Computed tomography (CT) is a widely used x-ray scanning technique. In its prominent use as a medical imaging device, CT serves as a workhorse in many clinical settings throughout the world. It provides answers to urgent diagnostic tasks such as oncology tumor staging, acute stroke analysis, or radiation therapy planning. Spectral Computed Tomography provides a concise, practical coverage of this important medical tool. The first chapter considers the main clinical motivations for spectral CT applications. In Chapter 2, the measurement properties of spectral CT systems are described. Chapter 3 provides an overview of the current state of research on spectral CT algorithms. Based on this overview, the technical realization of spectral CT systems is evaluated in Chapter 4. Device approaches such as DSCT, kV switching, and energy-resolving detectors are compared. Finally, Chapter 5 summarizes various algorithms for spectral CT reconstructions and spectral CT image postprocessing, and links these algorithms to clinical use cases