The Cell Biology of Stem Cells


Book Description

Stem cells have been gaining a lot of attention in recent years. Their unique potential to self-renew and differentiate has turned them into an attractive model for the study of basic biological questions such as cell division, replication, transcription, cell fate decisions, and more. With embryonic stem (ES) cells that can generate each cell type in the mammalian body and adult stem cells that are able to give rise to the cells within a given lineage, basic questions at different developmental stages can be addressed. Importantly, both adult and embryonic stem cells provide an excellent tool for cell therapy, making stem cell research ever more pertinent to regenerative medicine. As the title The Cell Biology of Stem Cells suggests, our book deals with multiple aspects of stem cell biology, ranging from their basic molecular characteristics to the in vivo stem cell trafficking of adult stem cells and the adult stem-cell niche, and ends with a visit to regeneration and cell fate reprogramming. In the first chapter, “Early embryonic cell fate decisions in the mouse”, Amy Ralson and Yojiro Yamanaka describe the mechanisms that support early developmental decisions in the mouse pre-implantation embryo and the current understanding of the source of the most immature stem cell types, which includes ES cells, trophoblast stem (TS) cells and extraembryonic endoderm stem (XEN) cells.




Principles of Cloning


Book Description

Principles of Cloning, Second Edition is the fully revised edition of the authoritative book on the science of cloning. The book presents the basic biological mechanisms of how cloning works and progresses to discuss current and potential applications in basic biology, agriculture, biotechnology, and medicine. Beginning with the history and theory behind cloning, the book goes on to examine methods of micromanipulation, nuclear transfer, genetic modification, and pregnancy and neonatal care of cloned animals. The cloning of various species—including mice, sheep, cattle, and non-mammals—is considered as well. The Editors have been involved in a number of breakthroughs using cloning technique, including the first demonstration that cloning works in differentiated cells done by the Recipient of the 2012 Nobel Prize for Physiology or Medicine – Dr John Gurdon; the cloning of the first mammal from a somatic cell – Drs Keith Campbell and Ian Wilmut; the demonstration that cloning can reset the biological clock - Drs Michael West and Robert Lanza; the demonstration that a terminally differentiated cell can give rise to a whole new individual – Dr Rudolf Jaenisch and the cloning of the first transgenic bovine from a differentiated cell – Dr Jose Cibelli. The majority of the contributing authors are the principal investigators on each of the animal species cloned to date and are expertly qualified to present the state-of-the-art information in their respective areas. - First and most comprehensive book on animal cloning, 100% revised - Describes an in-depth analysis of current limitations of the technology and research areas to explore - Offers cloning applications on basic biology, agriculture, biotechnology, and medicine




Stem Cell Engineering


Book Description

This book describes a global assessment of stem cell engineering research, achieved through site visits by a panel of experts to leading institutes, followed by dedicated workshops. The assessment made clear that engineers and the engineering approach with its quantitative, system-based thinking can contribute much to the progress of stem cell research and development. The increased need for complex computational models and new, innovative technologies, such as high-throughput screening techniques, organ-on-a-chip models and in vitro tumor models require an increasing involvement of engineers and physical scientists. Additionally, this book will show that although the US is still in a leadership position in stem cell engineering, Asian countries such as Japan, China and Korea, as well as European countries like the UK, Germany, Sweden and the Netherlands are rapidly expanding their investments in the field. Strategic partnerships between countries could lead to major advances of the field and scalable expansion and differentiation of stem cells. This study was funded by the National Science Foundation (NSF), the National Institutes of Health (NIH) and the National Institute of Standards and Technology (NIST).




Neural Crest Stem Cells


Book Description

Offers readers an understanding of the development of neural crest cells, which is crucial as many birth defects and tumours are of neural crest origin. Delving into stem cells from different locations of the body, this book explores the best possible source of such cells for the use in medical applications.




Computational Stem Cell Biology


Book Description

This volume details methods and protocols to further the study of stem cells within the computational stem cell biology (CSCB) field. Chapters are divided into four sections covering the theory and practice of modeling of stem cell behavior, analyzing single cell genome-scale measurements, reconstructing gene regulatory networks, and metabolomics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Stem Cell Biology: Methods and Protocols will be an invaluable guide to researchers as they explore stem cells from the perspective of computational biology.




Stem Cell Epigenetics


Book Description

Growing evidence suggests that epigenetic mechanisms play a central role in stem cell biology and are vital for determining gene expression during cellular differentiation and governing mammalian development. In Stem Cell Epigenetics, leading international researchers examine how chromatin regulation and bona fide epigenetic mechanisms underlie stem cell renewal and differentiation. Authors also explore how the diversity of cell types, including the extent revealed by single cell omic approaches, is achieved, and how such processes may be reversed or managed via epigenetic reprogramming.Topics discussed include chromatin in pluripotency, stem cells and DNA methylation, histone modifications in stem cells and differentiation, higher-order chromatin conformation in pluripotent cells, stem cells and cancer, epigenetics and disease modeling, brain organoids from pluripotent cells, transcriptional regulation in stem cells and differentiation, non-coding RNAs in pluripotency and early differentiation, and diseases caused by epigenetic alterations in stem cells. Additionally, the book discusses the potential implementation of stem cell epigenetics in drug discovery, regenerative medicine, and disease treatment. Stem Cell Epigenetics will provide researchers and physicians with a state-of-the-art map to orient across the frontiers of this fast-evolving field. - Analyzes the role of epigenetics in embryonic stem cell regulation - Indicates the epigenetic mechanisms involved in stem cell differentiation and highlights modifications and misregulations that may result in disease pathogenesis - Examines the potential applications of stem cell epigenetics in therapeutic disease interventions and regenerative medicine, providing a foundation for researchers and physicians to bring this exciting and fast-evolving field into a clinical setting - Features chapter contributions by leading international experts




Transcriptional and Translational Regulation of Stem Cells


Book Description

This volume describes the latest findings on transcriptional and translational regulation of stem cells. Both transcriptional activators and repressors have been shown to be crucial for the maintenance of the stem cell state. A key element of stem cell maintenance is repression of differentiation factors or developmental genes – achieved transcriptionally, epigenetically by the Polycomb complex, and post-transcriptionally by RNA-binding proteins and microRNAs. This volume takes two approaches to this topic – (1) illustrating the general principles outlined above through a series of different stem cell examples – embryonic, iPS and adult stem cells, and (2) describing several molecular families that have been shown to have roles in regulation of multiple stem cell populations.




Stem Cells and the Future of Regenerative Medicine


Book Description

Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.




Regulatory Networks in Stem Cells


Book Description

Stem cells appear to be fundamental cellular units associated with the origin of multicellular organisms and have evolved to function in safeguarding the cellular homeostasis in organ t- sues. The characteristics of stem cells that distinguish them from other cells have been the fascinating subjects of stem cell research. The important properties of stem cells, such as ma- tenance of quiescence, self-renewal capacity, and differentiation potential, have propelled this exciting ?eld and presently form a common theme of research in developmental biology and medicine. The derivation of pluripotent embryonic stem cells, the prospective identi?cation of multipotent adult stem cells, and, more recently, the induced pluripotent stem cells (popularly called iPS) are important milestones in the arena of stem cell biology. Complex networks of transcription factors, different signaling molecules, and the interaction of genetic and epi- netic events constantly modulate stem cell behavior to evoke programming and reprogramming processes in normal tissue homeostasis during development. In any given cellular scenario, the regulatory networks can pose considerable complexity and yet exert an orderly control of stem cell differentiation during normal development. An aberration in these ?nely tuned processes during development usually results in a spectrum of diseases such as cancers and neurological disorders. Thisunderscorestheimminentneedforamorecompleteunderstandingofmolecular mechanisms underlying the regulatory circuitries required for stem cell maintenance. Overthepast3–5years,adiversegroupofbenchandphysicianscientistshaveprospectively enhanced our knowledge of stem cell biology. These studies are unveiling many unrecognized or previously unknown fundamentals of developmental biology.




Germline Stem Cells


Book Description

In this comprehensive and cutting-edge book, leading experts explore the parameters that define germline stem cells and the mechanisms that regulate the cell behavior in order to better isolate, characterize and maintain them. The volume begins by providing protocols for germline stem cell identification and regulation in model organisms, and concludes with detailed chapters covering current techniques involving in vitro culture and the applications of the cells.