Relativity in Rotating Frames


Book Description

Even if the subject is a long-standing one, this is the first monograph on this field. On the one hand, this book is intended to give a rather wide review on this field, both in a historical and pedagogical perspective; on the other hand, it aims at critically re-examining and discussing the most controversial issues. For instance, according to some authors the celebrated Sagnac effect is a disproval of the theory of relativity applied to rotating frames; according to others, it is an astonishing experimental evidence of the relativistic theory. In order to give the reader a deeper insight into this research field, the contributing authors discuss their opinions on the main subjects in an enthralling virtual round table: in this way, the reader can get a direct comparison of the various viewpoints on the most controversial and interesting topics. This is particularly expedient, since the differences in the various approaches are often based upon subtleties that can be understood only by a direct comparison of the underlying hypotheses.




Relativity in Rotating Frames


Book Description

Even if the subject is a long-standing one, this is the first monograph on this field. On the one hand, this book is intended to give a rather wide review on this field, both in a historical and pedagogical perspective; on the other hand, it aims at critically re-examining and discussing the most controversial issues. For instance, according to some authors the celebrated Sagnac effect is a disproval of the theory of relativity applied to rotating frames; according to others, it is an astonishing experimental evidence of the relativistic theory. In order to give the reader a deeper insight into this research field, the contributing authors discuss their opinions on the main subjects in an enthralling virtual round table: in this way, the reader can get a direct comparison of the various viewpoints on the most controversial and interesting topics. This is particularly expedient, since the differences in the various approaches are often based upon subtleties that can be understood only by a direct comparison of the underlying hypotheses.




Relativity in Rotating Frames


Book Description

Even if the subject is a long-standing one, this is the first monograph on this field. On the one hand, this book is intended to give a rather wide review on this field, both in a historical and pedagogical perspective; on the other hand, it aims at critically re-examining and discussing the most controversial issues. For instance, according to some authors the celebrated Sagnac effect is a disproval of the theory of relativity applied to rotating frames; according to others, it is an astonishing experimental evidence of the relativistic theory. In order to give the reader a deeper insight into this research field, the contributing authors discuss their opinions on the main subjects in an enthralling virtual round table: in this way, the reader can get a direct comparison of the various viewpoints on the most controversial and interesting topics. This is particularly expedient, since the differences in the various approaches are often based upon subtleties that can be understood only by a direct comparison of the underlying hypotheses.




Special Relativity in General Frames


Book Description

Special relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn’t restrict itself to inertial frames but considers accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of gravity and shows where it becomes incompatible with Minkowsky spacetime. Well illustrated and enriched by many historical notes, this book also presents many applications of special relativity, ranging from particle physics (accelerators, particle collisions, quark-gluon plasma) to astrophysics (relativistic jets, active galactic nuclei), and including practical applications (Sagnac gyrometers, synchrotron radiation, GPS). In addition, the book provides some mathematical developments, such as the detailed analysis of the Lorentz group and its Lie algebra. The book is suitable for students in the third year of a physics degree or on a masters course, as well as researchers and any reader interested in relativity. Thanks to the geometric approach adopted, this book should also be beneficial for the study of general relativity. “A modern presentation of special relativity must put forward its essential structures, before illustrating them using concrete applications to specific dynamical problems. Such is the challenge (so successfully met!) of the beautiful book by Éric Gourgoulhon.” (excerpt from the Foreword by Thibault Damour)




Relativity and the Nature of Spacetime


Book Description

Puts the emphasis on conceptual questions: Why is there no such thing as absolute motion? What is the physical meaning of relativity of simultaneity? But, the most important question that is addressed in this book is "what is the nature of spacetime?" or, equivalently, "what is the dimensionality of the world at the macroscopic level?" Develops answers to these questions via a thorough analysis of relativistic effects and explicitly asking whether the objects involved in those effects are three-dimensional or four-dimensional. Discusses the implication of the result (this analysis clearly shows that if the world and the physical objects were three-dimensional, none of the kinematic relativistic effects and the experimental evidence supporting them would be possible) for physics, philosophy, and our entire world view are discussed.




Modern Classical Physics


Book Description

A groundbreaking text and reference book on twenty-first-century classical physics and its applications This first-year graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available




Mach's Principle


Book Description

This volume is a collection of scholarly articles on the Mach Principle, the impact that this theory has had since the end of the 19th century, and its role in helping Einstein formulate the doctrine of general relativity. 20th-century physics is concerned with the concepts of time, space, motion, inertia and gravity. The documentation on all of these makes this book a reference for those who are interested in the history of science and the theory of general relativity




Rotating Relativistic Stars


Book Description

The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.




Special Relativity, Electrodynamics, and General Relativity


Book Description

Special Relativity, Electrodynamics, and General Relativity: From Newton to Einstein is intended to teach students of physics, astrophysics, astronomy, and cosmology how to think about special and general relativity in a fundamental but accessible way. Designed to render any reader a "master of relativity, all material on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. - Fully revised and expanded second edition with improved figures - Enlarged discussion of dynamics and the relativistic version of Newton's second law - Resolves the twin paradox from the principles of special and general relativity - Includes new chapters which derive magnetism from relativity and electrostatics - Derives Maxwell's equations from Gauss' law and the principles of special relativity - Includes new chapters on differential geometry, space-time curvature, and the field equations of general relativity - Introduces black holes and gravitational waves as illustrations of the principles of general relativity and relates them to the 2015 and 2017 observational discoveries of LIGO




Essential Dynamics and Relativity


Book Description

Essential Dynamics & Relativity provides students with an introduction to the core aspects of dynamics and special relativity. The author reiterates important ideas and terms throughout and covers concepts that are often missing from other textbooks at this level. He also places each topic within the wider constructs of the theory, without jumping from topic to topic to illustrate a point. The first section of the book focuses on dynamics, discussing the basic aspects of single particle motion and analyzing the motion of multi-particle systems. The book also explains the dynamical behavior of both composite bodies (rigid bodies) and objects in non-inertial frames of reference (rotating reference frames). The second section concentrates on relativity. The author describes the ideas leading to the inception of special relativity. He also formulates fundamental aspects, such as time dilation, length contraction, Lorentz transformations, and the visual aids of Minkowski diagrams, necessary to develop more sophisticated ideas. He then develops the concepts within the context of relativistic mechanics. With many examples throughout and exercises at the end of each chapter, this text makes the often daunting and confusing ideas of dynamics and special relativity accessible to undergraduate students studying the subjects for the first time.