Reliability-Based Optimization für Multiple Constraints with Evolutionary Algorithms


Book Description

Inhaltsangabe:Introduction: In handling real-world optimization problems, it is often the case that the underlying decision variables and parameters cannot be controlled exactly as specified. For example, if a deterministic consideration of an optimization problem results in an optimal dimension of a cylindrical member to have a 50 mm diameter, there exists no manufacturing process which will guarantee the production of a cylinder having exactly a 50 mm diameter. Every manufacturing process has a finite machine precision and the dimensions are expected to vary around the specified value. Similarly, the strength of a material often does not remain fixed for the entire length of the material and is expected to vary from point to point. When such variations in decision variables and parameters are expected in practice, an obvious question arises: How reliable is the optimized design against failure when the suggested parameters cannot be adhered to? This question is important because in most optimization problems the deterministic optimum lies at the intersection of a number of constraint boundaries. Thus, if no uncertainties in parameters and variables are expected, the optimized solution is the best choice, but if uncertainties are expected, in most occasions, the optimized solution will be found to be infeasible, violating one or more constraints. These uncertainties, which are either controllable (e.g.imensions) or uncontrollable (e.g. material properties), are present and need to be accounted for in the design process. Assuming that the variables follow a probability distribution in practice, reliability-based design optimization (RBDO) methods find a reliable solution which is feasible with a pre-specified probability. In most RBDO problems, failure probability and costs are violating objectives, which means that when one is lowered, the other may rise. Therefore, it is important to identify the uncertain variables which have an impact on the problem and describe them with different probability distributions based on statistical calculations. Then, the ordinary deterministic constraint is replaced by a stochastic constraint which is only restricting the probability of failure for a solution, not the failure itself. This can be done for each constraint or for the complete set of constraints, for the complete structure. Different methods for evaluating the reliability of a solution exist. If the cumulative density function (CDF) with its [...]




Evolutionary Multi-Criterion Optimization


Book Description

This book constitutes the refereed proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007, held in Matsushima, Japan in March 2007. The 65 revised full papers presented together with 4 invited papers are organized in topical sections on algorithm design, algorithm improvements, alternative methods, applications, engineering design, many objectives, objective handling, and performance assessments.




EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VII


Book Description

This book comprises nine selected works on numerical and computational methods for solving multiobjective optimization, game theory, and machine learning problems. It provides extended versions of selected papers from various fields of science such as computer science, mathematics and engineering that were presented at EVOLVE 2013 held in July 2013 at Leiden University in the Netherlands. The internationally peer-reviewed papers include original work on important topics in both theory and applications, such as the role of diversity in optimization, statistical approaches to combinatorial optimization, computational game theory, and cell mapping techniques for numerical landscape exploration. Applications focus on aspects including robustness, handling multiple objectives, and complex search spaces in engineering design and computational biology.




Many-Criteria Optimization and Decision Analysis


Book Description

This book presents the state-of-the-art, current challenges, and future perspectives for the field of many-criteria optimization and decision analysis. The field recognizes that real-life problems often involve trying to balance a multiplicity of considerations simultaneously – such as performance, cost, risk, sustainability, and quality. The field develops theory, methods and tools that can support decision makers in finding appropriate solutions when faced with many (typically more than three) such criteria at the same time. The book consists of two parts: key research topics, and emerging topics. Part I begins with a general introduction to many-criteria optimization, perspectives from research leaders in real-world problems, and a contemporary survey of the attributes of problems of this kind. This part continues with chapters on fundamental aspects of many-criteria optimization, namely on order relations, quality measures, benchmarking, visualization, and theoretical considerations. Part II offers more specialized chapters on correlated objectives, heterogeneous objectives, Bayesian optimization, and game theory. Written by leading experts across the field of many-criteria optimization, this book will be an essential resource for researchers in the fields of evolutionary computing, operations research, multiobjective optimization, and decision science.




Multi-objective Evolutionary Optimisation for Product Design and Manufacturing


Book Description

With the increasing complexity and dynamism in today’s product design and manufacturing, more optimal, robust and practical approaches and systems are needed to support product design and manufacturing activities. Multi-objective Evolutionary Optimisation for Product Design and Manufacturing presents a focused collection of quality chapters on state-of-the-art research efforts in multi-objective evolutionary optimisation, as well as their practical applications to integrated product design and manufacturing. Multi-objective Evolutionary Optimisation for Product Design and Manufacturing consists of two major sections. The first presents a broad-based review of the key areas of research in multi-objective evolutionary optimisation. The second gives in-depth treatments of selected methodologies and systems in intelligent design and integrated manufacturing. Recent developments and innovations in multi-objective evolutionary optimisation make Multi-objective Evolutionary Optimisation for Product Design and Manufacturing a useful text for a broad readership, from academic researchers to practicing engineers.




Computational Intelligence - Volume II


Book Description

Computational intelligence is a component of Encyclopedia of Technology, Information, and Systems Management Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Computational intelligence is a rapidly growing research field including a wide variety of problem-solving techniques inspired by nature. Traditionally computational intelligence consists of three major research areas: Neural Networks, Fuzzy Systems, and Evolutionary Computation. Neural networks are mathematical models inspired by brains. Neural networks have massively parallel network structures with many neurons and weighted connections. Whereas each neuron has a simple input-output relation, a neural network with many neurons can realize a highly non-linear complicated mapping. Connection weights between neurons can be adjusted in an automated manner by a learning algorithm to realize a non-linear mapping required in a particular application task. Fuzzy systems are mathematical models proposed to handle inherent fuzziness in natural language. For example, it is very difficult to mathematically define the meaning of “cold” in everyday conversations such as “It is cold today” and “Can I have cold water”. The meaning of “cold” may be different in a different situation. Even in the same situation, a different person may have a different meaning. Fuzzy systems offer a mathematical mechanism to handle inherent fuzziness in natural language. As a result, fuzzy systems have been successfully applied to real-world problems by extracting linguistic knowledge from human experts in the form of fuzzy IF-THEN rules. Evolutionary computation includes various population-based search algorithms inspired by evolution in nature. Those algorithms usually have the following three mechanisms: fitness evaluation to measure the quality of each solution, selection to choose good solutions from the current population, and variation operators to generate offspring from parents. Evolutionary computation has high applicability to a wide range of optimization problems with different characteristics since it does not need any explicit mathematical formulations of objective functions. For example, simulation-based fitness evaluation is often used in evolutionary design. Subjective fitness evaluation by a human user is also often used in evolutionary art and music. These volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers.




Advances in Computational Intelligence Systems


Book Description

This book contains the papers presented at the 20th UK Workshop on Computational Intelligence (UKCI 2021), held virtually by Aberystwyth University, 8–10th September 2021. This marks the 20th anniversary of UKCI; a testament to the increasing role and importance of Computational Intelligence (CI) and the continuing interest in its development. UKCI provides a forum for the academic community and industry to share ideas and experience in this field. EDMA 2021, the 4th International Engineering Data- and Model-Driven Applications workshop, is also incorporated and held in conjunction with UKCI 2021. Paper submissions were invited in the areas of fuzzy systems, neural networks, evolutionary computation, machine learning, data mining, cognitive computing, intelligent robotics, hybrid methods, deep learning and applications of CI.




Evolution in Action: Past, Present and Future


Book Description

This edited research monograph brings together contributions from computer scientists, biologists, and engineers who are engaged with the study of evolution and how it may be applied to solve real-world problems. It also serves as a Festschrift dedicated to Erik D. Goodman, the founding director of the BEACON Center for the Study of Evolution in Action, a pioneering NSF Science and Technology Center headquartered at Michigan State University. The contributing authors are leading experts associated with the center, and they serve in top research and industrial establishments across the US and worldwide. Part I summarizes the history of the BEACON Center, with refreshingly personal chapters that describe Erik's working and leadership style, and others that discuss the development and successes of the center in the context of research funding, projects, and careers. The chapters in Part II deal with the evolution of genomes and evolvability. The contributions in Part III discuss the evolution of behavior and intelligence. Those in Part IV concentrate on the evolution of communities and collective dynamics. The chapters in Part V discuss selected evolutionary computing applications in domains such as arts and science, automated program repair, cybersecurity, mechatronics, and genomic prediction. Part VI deals with evolution in the classroom, using creativity in research, and responsible conduct in research training. The book concludes with a special chapter from Erik Goodman, a short biography that concentrates on his personal positive influences and experiences throughout his long career in academia and industry.




Parallel Problem Solving from Nature - PPSN X


Book Description

This book constitutes the refereed proceedings of the 10th International Conference on Parallel Problem Solving from Nature, PPSN 2008, held in Dortmund, Germany, in September 2008. The 114 revised full papers presented were carefully reviewed and selected from 206 submissions. The conference covers a wide range of topics, such as evolutionary computation, quantum computation, molecular computation, neural computation, artificial life, swarm intelligence, artificial ant systems, artificial immune systems, self-organizing systems, emergent behaviors, and applications to real-world problems. The paper are organized in topical sections on formal theory, new techniques, experimental analysis, multiobjective optimization, hybrid methods, and applications.




Applied Multi-objective Optimization


Book Description

The book explains basic ideas behind several kinds of applied multi-objective optimization and shows how it will be applied in practical contexts in the domain of healthcare, engineering design, and manufacturing. The book discusses how meta-heuristic algorithms are successful in resolving challenging, multi-objective optimization issues in various disciplines, including engineering, economics, medical and environmental management. The topic is useful for graduates, researchers and lecturers in optimization, engineering, management science and computer science.