Reliability Prediction from Burn-In Data Fit to Reliability Models


Book Description

This work will educate chip and system designers on a method for accurately predicting circuit and system reliability in order to estimate failures that will occur in the field as a function of operating conditions at the chip level. This book will combine the knowledge taught in many reliability publications and illustrate how to use the knowledge presented by the semiconductor manufacturing companies in combination with the HTOL end-of-life testing that is currently performed by the chip suppliers as part of their standard qualification procedure and make accurate reliability predictions. This book will allow chip designers to predict FIT and DPPM values as a function of operating conditions and chip temperature so that users ultimately will have control of reliability in their design so the reliability and performance will be considered concurrently with their design. - The ability to include reliability calculations and test results in their product design - The ability to use reliability data provided to them by their suppliers to make meaningful reliability predictions - Have accurate failure rate calculations for calculating warrantee period replacement costs




Reliability Prediction for Microelectronics


Book Description

RELIABILITY PREDICTION FOR MICROELECTRONICS Wiley Series in Quality & Reliability Engineering REVOLUTIONIZE YOUR APPROACH TO RELIABILITY ASSESSMENT WITH THIS GROUNDBREAKING BOOK Reliability evaluation is a critical aspect of engineering, without which safe performance within desired parameters over the lifespan of machines cannot be guaranteed. With microelectronics in particular, the challenges to evaluating reliability are considerable, and statistical methods for creating microelectronic reliability standards are complex. With nano-scale microelectronic devices increasingly prominent in modern life, it has never been more important to understand the tools available to evaluate reliability. Reliability Prediction for Microelectronics meets this need with a cluster of tools built around principles of reliability physics and the concept of remaining useful life (RUL). It takes as its core subject the ‘physics of failure’, combining a thorough understanding of conventional approaches to reliability evaluation with a keen knowledge of their blind spots. It equips engineers and researchers with the capacity to overcome decades of errant reliability physics and place their work on a sound engineering footing. Reliability Prediction for Microelectronics readers will also find: Focus on the tools required to perform reliability assessments in real operating conditions Detailed discussion of topics including failure foundation, reliability testing, acceleration factor calculation, and more New multi-physics of failure on DSM technologies, including TDDB, EM, HCI, and BTI Reliability Prediction for Microelectronics is ideal for reliability and quality engineers, design engineers, and advanced engineering students looking to understand this crucial area of product design and testing.




Reliability and Physics-of-Healthy in Mechatronics


Book Description

This book illustrates simply, but with many details, the state of the art of reliability science, exploring clear reliability disciplines and applications through concrete examples from their industries and from real life, based on industrial experiences. Many experts believe that reliability is not only a matter of statistics but is a multidisciplinary scientific topic, involving materials, tests, simulations, quality tools, manufacturing, electronics, mechatronics, environmental engineering and Big Data, among others. For a complex mechatronic system, failure risks have to be identified at an early stage of the design. In the automotive and aeronautic industries, fatigue simulation is used both widely and efficiently. Problems arise from the variability of inputs such as fatigue parameters and life curves. This book aims to discuss probabilistic fatigue and reliability simulation. To do this, Reliability and Physics-of-Healthy in Mechatronics provides a study on some concepts of a predictive reliability model of microelectronics, with examples from the automotive, aeronautic and space industries, based on entropy and Physics-of-Healthy




Reliability Engineering


Book Description

Get a firm handle on the engineering reliability process with this insightful and complete resource Named one of the Best Industrial Management eBooks of All Time by BookAuthority As featured on CNN, Forbes and Inc – BookAuthority identifies and rates the best books in the world, based on recommendations by thought leaders and experts The newly and thoroughly revised 3rd Edition of Reliability Engineering delivers a comprehensive and insightful analysis of this crucial field. Accomplished author, professor, and engineer, Elsayed. A. Elsayed includes new examples and end-of-chapter problems to illustrate concepts, new chapters on resilience and the physics of failure, revised chapters on reliability and hazard functions, and more case studies illustrating the approaches and methodologies described within. The book combines analyses of system reliability estimation for time independent and time dependent models with the construction of the likelihood function and its use in estimating the parameters of failure time distribution. It concludes by addressing the physics of failures, mechanical reliability, and system resilience, along with an explanation of how to ensure reliability objectives by providing preventive and scheduled maintenance and warranty policies. This new edition of Reliability Engineering covers a wide range of topics, including: Reliability and hazard functions, like the Weibull Model, the Exponential Model, the Gamma Model, and the Log-Logistic Model, among others System reliability evaluations, including parallel-series, series-parallel, and mixed parallel systems The concepts of time- and failure-dependent reliability within both repairable and non-repairable systems Parametric reliability models, including types of censoring, and the Exponential, Weibull, Lognormal, Gamma, Extreme Value, Half-Logistic, and Rayleigh Distributions Perfect for first-year graduate students in industrial and systems engineering, Reliability Engineering, 3rd Edition also belongs on the bookshelves of practicing professionals in research laboratories and defense industries. The book offers a practical and approachable treatment of a complex area, combining the most crucial foundational knowledge with necessary and advanced topics.




System Reliability


Book Description

Researchers from the entire world write to figure out their newest results and to contribute new ideas or ways in the field of system reliability and maintenance. Their articles are grouped into four sections: reliability, reliability of electronic devices, power system reliability and feasibility and maintenance. The book is a valuable tool for professors, students and professionals, with its presentation of issues that may be taken as examples applicable to practical situations. Some examples defining the contents can be highlighted: system reliability analysis based on goal-oriented methodology; reliability design of water-dispensing systems; reliability evaluation of drivetrains for off-highway machines; extending the useful life of asset; network reliability for faster feasibility decision; analysis of standard reliability parameters of technical systems' parts; cannibalisation for improving system reliability; mathematical study on the multiple temperature operational life testing procedure, for electronic industry; reliability prediction of smart maximum power point converter in photovoltaic applications; reliability of die interconnections used in plastic discrete power packages; the effects of mechanical and electrical straining on performances of conventional thick-film resistors; software and hardware development in the electric power system; electric interruptions and loss of supply in power systems; feasibility of autonomous hybrid AC/DC microgrid system; predictive modelling of emergency services in electric power distribution systems; web-based decision-support system in the electric power distribution system; preventive maintenance of a repairable equipment operating in severe environment; and others.




Advances in Data-driven Computing and Intelligent Systems


Book Description

The volume is a collection of best selected research papers presented at International Conference on Advances in Data-driven Computing and Intelligent Systems (ADCIS 2022) held at BITS Pilani, K K Birla Goa Campus, Goa, India during 23 – 25 September 2022. It includes state-of-the art research work in the cutting-edge technologies in the field of data science and intelligent systems. The book presents data-driven computing; it is a new field of computational analysis which uses provided data to directly produce predictive outcomes. The book will be useful for academicians, research scholars, and industry persons.




Thermal and Power Management of Integrated Circuits


Book Description

In Thermal and Power Management of Integrated Circuits, power and thermal management issues in integrated circuits during normal operating conditions and stress operating conditions are addressed. Thermal management in VLSI circuits is becoming an integral part of the design, test, and manufacturing. Proper thermal management is the key to achieve high performance, quality and reliability. Performance and reliability of integrated circuits are strong functions of the junction temperature. A small increase in junction temperature may result in significant reduction in the device lifetime. This book reviews the significance of the junction temperature as a reliability measure under nominal and burn-in conditions. The latest research in the area of electro-thermal modeling of integrated circuits will also be presented. Recent models and associated CAD tools are covered and various techniques at the circuit and system levels are reviewed. Subsequently, the authors provide an insight into the concept of thermal runaway and how it may best be avoided. A section on low temperature operation of integrated circuits concludes the book.




Safety and Reliability: Methodology and Applications


Book Description

Within the last fifty years the performance requirements for technical objects and systems were supplemented with: customer expectations (quality), abilities to prevent the loss of the object properties in operation time (reliability and maintainability), protection against the effects of undesirable events (safety and security) and the ability to




Reliability, Yield, and Stress Burn-In


Book Description

The international market is very competitive for high-tech manufacturers to day. Achieving competitive quality and reliability for products requires leader ship from the top, good management practices, effective and efficient operation and maintenance systems, and use of appropriate up-to-date engineering de sign tools and methods. Furthermore, manufacturing yield and reliability are interrelated. Manufacturing yield depends on the number of defects found dur ing both the manufacturing process and the warranty period, which in turn determines the reliability. the production of microelectronics has evolved into Since the early 1970's, one of the world's largest manufacturing industries. As a result, an important agenda is the study of reliability issues in fabricating microelectronic products and consequently the systems that employ these products, particularly, the new generation of microelectronics. Such an agenda should include: • the economic impact of employing the microelectronics fabricated by in dustry, • a study of the relationship between reliability and yield, • the progression toward miniaturization and higher reliability, and • the correctness and complexity of new system designs, which include a very significant portion of software.




Lifetime Data: Models in Reliability and Survival Analysis


Book Description

Statistical models and methods for lifetime and other time-to-event data are widely used in many fields, including medicine, the environmental sciences, actuarial science, engineering, economics, management, and the social sciences. For example, closely related statistical methods have been applied to the study of the incubation period of diseases such as AIDS, the remission time of cancers, life tables, the time-to-failure of engineering systems, employment duration, and the length of marriages. This volume contains a selection of papers based on the 1994 International Research Conference on Lifetime Data Models in Reliability and Survival Analysis, held at Harvard University. The conference brought together a varied group of researchers and practitioners to advance and promote statistical science in the many fields that deal with lifetime and other time-to-event-data. The volume illustrates the depth and diversity of the field. A few of the authors have published their conference presentations in the new journal Lifetime Data Analysis (Kluwer Academic Publishers).