Reliability of W-Band InAIN/GaN High Electron Mobility Transistors


Book Description

AlGaN/GaN High Electron Mobility Transistors (HEMTs) have enjoyed tremendous market growth in RF power amplifiers over the past decades. In the quest for enhancing the operating frequency of GaN HEMTs, there has been a great effort to scale down the gate length. Maintaining acceptable short-channel effects requires shrinking the barrier thickness at the same time. However, a limitation exists since there is a minimum barrier thickness that is needed to obtain a sufficiently high two-dimensional electron gas density. One possible solution to this problem is the use of a new barrier material, i.e., InAlN. Due to its high spontaneous polarization, if InAlN is used as a barrier material in GaN HEMTs, a much smaller layer thickness is required compared with conventional HEMTs. This enables further barrier thickness scaling and therefore gate length scaling and a higher frequency response. However, as a relatively new structure, reliability studies of InAlN/GaN HEMTs are still lacking. Solid reliability is essential before the wide commercial deployment of this new technology. This thesis investigates the most relevant degradation mechanisms under important stress regimes, aiming at building a comprehensive understanding of InAIN/GaN HEMT reliability. Through investigating various voltage, current, and temperature stress levels, we have identified one recoverable degradation mechanism as well as three permanent degradation mechanisms. Under high drain voltage, hot-electron trapping results in temporary drain current decrease and drain resistance increase. In addition, under high drain voltage but relatively low drain current level, permanent negative threshold voltage shift and drain current increase have been observed. We attribute the phenomena to dehydrogenation of pre-existing defects in GaN channel by hot electrons. Under high positive gate bias, defect generation in the AIN interlayer due to high electric field across AIN has proven to be responsible for the observed gate leakage current increase. Also, under high-power stress conditions, positive threshold voltage shift and maximum drain current decrease have been consistently observed. We verified through both thermal stress experiments and Transmission Electron Microscopy (TEM) analysis that Schottky gate sinking is the cause. This work provides fundamental understanding of potential reliability concerns in InAlN/GaN HEMTs and is essential in accelerating the future commercialization of this promising technology.




Reliability of GaN High Electron Mobility Transistors on Silicon Substrates


Book Description

GaN High Electron Mobility Transistors are promising devices for high power and high frequency applications such as cellular base stations, radar and wireless network systems, due to the high bandgap and high breakdown field of GaN. However, their reliability is the main hindrance to the deployment of these transistors in a wide scale. In this study, we have investigated the reliability of GaN HEMTs grown on Si substrates. The large lattice and thermal mismatch between GaN and Si adds an additional reliability concern as compared to conventional substrates such as SiC and sapphire. We have performed systematic electrical stress experiments to understand the physics of degradation in these devices. Relevant device parameters are recorded continuously during these stress tests by a benign characterization suite. We conclude from these experiments that high voltage stress conditions are more effective in degrading the device than high current conditions. High voltage stress is found to impact the device in two different ways. The first is increased trapping in the large number of traps in the highly mismatched device structure even before any stress. The second is through the converse piezoelectric effect discussed by Joh et al. for GaN-on-SiC devices. We also have found evidence that these two mechanisms are connected. We have used UV illumination to enhance detrapping and shown that trapped electrons screen the electric field in the device and increase the critical voltage at which gate current degrades.







Handbook for III-V High Electron Mobility Transistor Technologies


Book Description

This book focusses on III-V high electron mobility transistors (HEMTs) including basic physics, material used, fabrications details, modeling, simulation, and other important aspects. It initiates by describing principle of operation, material systems and material technologies followed by description of the structure, I-V characteristics, modeling of DC and RF parameters of AlGaN/GaN HEMTs. The book also provides information about source/drain engineering, gate engineering and channel engineering techniques used to improve the DC-RF and breakdown performance of HEMTs. Finally, the book also highlights the importance of metal oxide semiconductor high electron mobility transistors (MOS-HEMT). Key Features Combines III-As/P/N HEMTs with reliability and current status in single volume Includes AC/DC modelling and (sub)millimeter wave devices with reliability analysis Covers all theoretical and experimental aspects of HEMTs Discusses AlGaN/GaN transistors Presents DC, RF and breakdown characteristics of HEMTs on various material systems using graphs and plots




Power GaN Devices


Book Description

This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.




Degradation Mechanisms of GaN HEMTs


Book Description

(Cont.) From a set of our experiments, we have hypothesized that the main mechanism behind device degradation is defect formation through the inverse piezoelectric effect and subsequent electron trapping. Unlike current conventional wisdom, hot electrons are less likely to be the direct cause of electrical degradation in the devices that we have studied. Our studies suggest a number of possibilities to improve the electrical reliability of GaN HEMTs.










Reliability


Book Description