Remote Sensing Intelligent Interpretation for Geology


Book Description

This book presents the theories and methods for geology intelligent interpretation based on deep learning and remote sensing technologies. The main research subjects of this book include lithology and mineral abundance. This book focuses on the following five aspects: 1. Construction of geology remote sensing datasets from multi-level (pixel-level, scene-level, semantic segmentation-level, prior knowledge-assisted, transfer learning dataset), which are the basis of geology interpretation based on deep learning. 2. Research on lithology scene classification based on deep learning, prior knowledge, and remote sensing. 3. Research on lithology semantic segmentation based on deep learning and remote sensing. 4. Research on lithology classification based on transfer learning and remote sensing. 5. Research on inversion of mineral abundance based on the sparse unmixing theory and hyperspectral remote sensing. The book is intended for undergraduate and graduate students who are interested in geology, remote sensing, and artificial intelligence. It is also used as a reference book for scientific and technological personnel of geological exploration.




Remote Sensing Intelligent Interpretation for Mine Geological Environment


Book Description

This book examines the theory and methods of remote sensing intelligent interpretation based on deep learning. Based on geological and environmental effects on mines, this book constructs a set of systematic mine remote sensing datasets focusing on the multi-level task with the system of “target detection→scene classification→semantic segmentation." Taking China’s Hubei Province as an example, this book focuses on the following four aspects: 1. Development of a multiscale remote sensing dataset of the mining area, including mine target remote sensing dataset, mine (including non-mine areas) remote sensing scene dataset, and semantic segmentation remote sensing dataset of mining land cover. The three datasets are the basis of intelligent interpretation based on deep learning. 2. Research on mine target remote sensing detection method based on deep learning. 3. Research on remote sensing scene classification method of mine and non-mine areas based on deep learning. 4. Research on the fine-scale classification method of mining land cover based on semantic segmentation. The book is a valuable reference both for scholars, practitioners and as well as graduate students who are interested in mining environment research.




Intelligent Interpretation for Geological Disasters


Book Description

This book comprehensively utilizes the new generation of artificial intelligence and remote sensing science and technology to systematically carry out researches on high-precision recognition, monitoring, analysis, and assessment of geological disasters by using different technologies of "ground, airspace, and space-based systems" and different scales of "target-semantic-region". The main contents include: 1) Intelligent interpretation theory and methods of geological disasters, 2) Intelligent analysis of landslide based on long-term ground monitoring data, 3) Intelligent analysis of landslide evolution based on optical satellite remote sensing data, 4) Deep learning-based remote sensing detection of landslide, 5) Intelligent assessment methods of landslide susceptibility, 6) Intelligent recognition of ground figure based on airspace-based remote sensing data. The book is of interest to graduate student, scientific, and technological personnel who work in the area of geological disasters, natural hazards, remote sensing, and artificial intelligence.




Image Processing and GIS for Remote Sensing


Book Description

Following the successful publication of the 1st edition in 2009, the 2nd edition maintains its aim to provide an application-driven package of essential techniques in image processing and GIS, together with case studies for demonstration and guidance in remote sensing applications. The book therefore has a “3 in 1” structure which pinpoints the intersection between these three individual disciplines and successfully draws them together in a balanced and comprehensive manner. The book conveys in-depth knowledge of image processing and GIS techniques in an accessible and comprehensive manner, with clear explanations and conceptual illustrations used throughout to enhance student learning. The understanding of key concepts is always emphasised with minimal assumption of prior mathematical experience. The book is heavily based on the authors’ own research. Many of the author-designed image processing techniques are popular around the world. For instance, the SFIM technique has long been adopted by ASTRIUM for mass-production of their standard “Pan-sharpen” imagery data. The new edition also includes a completely new chapter on subpixel technology and new case studies, based on their recent research.




Machine Learning and Artificial Intelligence in Geosciences


Book Description

Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics




Remote Sensing


Book Description

Remote sensing has undergone profound changes over the past two decades as GPS, GIS, and sensor advances have significantly expanded the user community and availability of images. New tools, such as automation, cloud-based services, drones, and artificial intelligence, continue to expand and enhance the discipline. Along with comprehensive coverage and clarity, Sabins and Ellis establish a solid foundation for the insightful use of remote sensing with an emphasis on principles and a focus on sensor technology and image acquisition. The Fourth Edition presents a valuable discussion of the growing and permeating use of technologies such as drones and manned aircraft imaging, DEMs, and lidar. The authors explain the scientific and societal impacts of remote sensing, review digital image processing and GIS, provide case histories from areas around the globe, and describe practical applications of remote sensing to the environment, renewable and nonrenewable resources, land use/land cover, natural hazards, and climate change. • Remote Sensing Digital Database includes 27 examples of satellite and airborne imagery that can be used to jumpstart labs and class projects. The database includes descriptions, georeferenced images, DEMs, maps, and metadata. Users can display, process, and interpret images with open-source and commercial image processing and GIS software. • Flexible, revealing, and instructive, the Digital Image Processing Lab Manual provides 12 step-by-step exercises on the following topics: an introduction to ENVI, Landsat multispectral processing, image processing, band ratios and principal components, georeferencing, DEMs and lidar, IHS and image sharpening, unsupervised classification, supervised classification, hyperspectral, and change detection and radar. • Introductory and instructional videos describe and guide users on ways to access and utilize the Remote Sensing Digital Database and the Digital Image Processing Lab Manual. • Answer Keys are available for instructors for questions in the text as well as the Digital Image Processing Lab Manual.




Deep Learning for the Earth Sciences


Book Description

DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.




Proceedings of the 2023 9th International Conference on Architectural, Civil and Hydraulic Engineering (ICACHE 2023)


Book Description

This is an open access book. As an annual conference held successfully in the past 8 years, 2023 9th International Conference on Architectural, Civil and Hydraulic Engineering (ICACHE 2023) will be held by China University of Petroleum(East China)on October 13-15, 2023 in Qingdao, China. ICACHE 2023 is hosted by China University of Petroleum(East China)and organized by College of Pipeline and Civil Engineering, China University of Petroleum(East China)and supported by China University of Mining & Technology, Beijing, Shandong University of Science and Technology, Sun Yat-sen University, Central South University, Fujian Agriculture and Forestry University, Southeast University, Eshragh Institute of Higher Education, Shandong Chambroad HoldingGroup Co., Ltd., Qingdao Times Design Co., Ltd.. The conference is an international forum for the presentation of technological advances and research results in the fields of architecture, civil and hydraulic engineering. The conference will bring together leading researchers, engineers and scientists in the domain of interest from around the world. We warmly welcome previous and prospected authors submit your new research papers to ICACHE 2023, and share the valuable experiences with the scientist and scholars around the world.




Remote Sensing and Image Interpretation


Book Description

From recent developments in digital image processing to the next generation of satellite systems, this book provides a comprehensive introduction to the field of remote sensing and image interpretation. This book is discipline neutral, so readers in any field of study can gain a clear understanding of these systems and their virtually unlimited applications. * The authors underscore close interactions among the related areas of remote sensing, GIS, GPS, digital image processing, and environmental modeling. * Appendices include material on sources of remote sensing data and information, remote sensing periodicals, online glossaries, and online tutorials.




Spatial Observation of Giant Panda Habitat


Book Description

This book evaluates the past, present, and future habitat suitability of giant pandas based on spatial observation technology involving optical remote sensing, microwave remote sensing, and LiDAR to discover the mysterious ecological environment of giant panda habitat. Considering the problems faced by the world natural heritage site protection, it takes the world natural heritage site “Sichuan Giant Panda Sanctuaries – Wolong, Mt Siguniang and Jiajin Mountains” as the research area, exemplifies systematically the various techniques and methodologies of spatial information technology for monitoring, evaluation, and prediction of rare and endangered species habitats, and provides scientific suggestions for sustainable development of giant panda habitat based on a series of comprehensive case analysis at Wolong national nature reserve and Ya'an prefecture, Sichuan province, China. The book serves both as a textbook in the field of natural heritage protection, remote sensing, and GIS application, as well as a reference for managing natural heritage sites.