A Strategy for Active Remote Sensing Amid Increased Demand for Radio Spectrum


Book Description

Active remote sensing is the principal tool used to study and to predict short- and long-term changes in the environment of Earth - the atmosphere, the oceans and the land surfaces - as well as the near space environment of Earth. All of these measurements are essential to understanding terrestrial weather, climate change, space weather hazards, and threats from asteroids. Active remote sensing measurements are of inestimable benefit to society, as we pursue the development of a technological civilization that is economically viable, and seek to maintain the quality of our life. A Strategy for Active Remote Sensing Amid Increased Demand for Spectrum describes the threats, both current and future, to the effective use of the electromagnetic spectrum required for active remote sensing. This report offers specific recommendations for protecting and making effective use of the spectrum required for active remote sensing.




Introduction to Satellite Remote Sensing


Book Description

Introduction to Satellite Remote Sensing: Atmosphere, Ocean and Land Applications is the first reference book to cover ocean applications, atmospheric applications, and land applications of remote sensing. Applications of remote sensing data are finding increasing application in fields as diverse as wildlife ecology and coastal recreation management. The technology engages electromagnetic sensors to measure and monitor changes in the earth’s surface and atmosphere. The book opens with an introduction to the history of remote sensing, starting from when the phrase was first coined. It goes on to discuss the basic concepts of the various systems, including atmospheric and ocean, then closes with a detailed section on land applications. Due to the cross disciplinary nature of the authors’ experience and the content covered, this is a must have reference book for all practitioners and students requiring an introduction to the field of remote sensing. Provides study questions at the end of each chapter to aid learning Covers all satellite remote sensing technologies, allowing readers to use the text as instructional material Includes the most recent technologies and their applications, allowing the reader to stay up-to-date Delves into laser sensing (LIDAR) and commercial satellites (DigitalGlobe) Presents examples of specific satellite missions, including those in which new technology has been introduced




Remote Sensing Physics


Book Description

An introduction to the physical principles underlying Earth remote sensing. The development of spaceborne remote sensing technology has led to a new understanding of the complexity of our planet by allowing us to observe Earth and its environments on spatial and temporal scales that are unavailable to terrestrial sensors. Remote Sensing Physics: An Introduction to Observing Earth from Space is a graduate-level text that examines the underlying physical principles and techniques used to make remote measurements, along with the algorithms used to extract geophysical information from those measurements. Volume highlights include: Basis for Earth remote sensing including ocean, land, and atmosphere Description of satellite orbits relevant for Earth observations Physics of passive sensing, including infrared, optical and microwave imagers Physics of active sensing, including radars and lidars Overview of current and future Earth observation missions Compendium of resources including an extensive bibliography Sample problem sets and answers available to instructors The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.







Remote Sensing of the Earth from Space: Atmospheric Correction


Book Description

The monograph being proposed for the English-speaking research community is concentrated on the atmospheric correction of satellite images as a part of thematic interpretation procedures while processing remote sensing data. For linguistic reasons a large section of the community may have been unaware of the progress made in Russia in this field of science and technology. Meanwhile, Russia was the first country to launch the first artificial satellite in 1957 and to obtain from space for the first time spectra of the Earth's atmosphere in the 1960's. New applications of the radiation transfer theory for the atmosphere underlying surface system appeared first in Russia in the 1970's. Direct and in verse problems of the atmospheric optics were then formulated giving the scientific basis for studies of natural resources from space. Since that time new mathematical treatments for the atmospheric correction procedures have been widely developed in Russia, including both analytical and numerical tech niques to simulate spectral, angular, and spatial distributions of the outgoing radiation in visual and infrared regions. The authors of the book were at the beginning of the scientific approach. A wide range of mathematical im provements to elaborate polinomial approximations for dependencies between atmospheric radiation field and parameters of space surveying was due to the necessity to process satellite images in real time using special software of ex isted computer means for the studies.




Space Remote Sensing Systems


Book Description

Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical radiometer and spectrometer systems are presented in Chapters 4 and 5. Chapter 6 elaborates the passive space microwave radiometer systems. Chapters 7 and 8 deliberate the active space lidar systems, active space synthetic aperture radar, and scatterometer systems. The low-earth-orbit large satellite systems and applications are covered in Chapter 9. The last chapter considers the geosynchronous-orbit large satellite systems. This publication is written for scientists, engineers, and seniors or graduate students who are interested in the field of space remote sensing systems.




Remote Sensing of the Atmosphere from Space


Book Description

In Optical Remote Sensing From Satellites the authors set the scene for an understanding of recent advances in optical remote sensing of the earth and the importance of satellite techniques in this regard. As presently structured, the book consists of ten chapters. After a brief Preface and Introduction to satellite remote sensing, the authors describe satellite instrumentation including detectors and imaging systems, image processing, multispectral and hyperspectral instruments in chapter 3. Chapter 4 looks at electromagnetic radiation discussing topics such as Maxwell theory, the Stokes vector and the theoretical background to light reflection, transmission and scattering. It provides the physical basis for optical remote sensing from space. Chapter 5 describes the various sources of radiation such as blackbody, solar and terrestrial radiation and artificial sources such as lasers. Chapter 6 reviews light propagation in the atmosphere which is an important topic since satellite signals are influenced not only by atmospheric scattering but also by reflectance from natural surfaces such as oceans, soil, vegetation, forest, snow and ice, and these topics are covered in chapter 7. Chapter 8 considers forward models and inverse problems (e.g. linearization techniques, minimization procedures and the adjoint radiative transfer equation). Chapter 9 comprises a description of the application of techniques outlined in previous chapters for the solution of a number of practical problems such as the determination of aerosol, trace gas, and cloud properties using spectral top-of-atmosphere reflectances as detected by satellites. The final chapter 10 examines optical remote sensing techniques as applied to the monitoring of hurricanes, floods, desertification, volcanic eruptions, and climate change.




Satellite Remote Sensing


Book Description




Remote Sensing of Aerosols, Clouds, and Precipitation


Book Description

Remote Sensing of Aerosols, Clouds, and Precipitation compiles recent advances in aerosol, cloud, and precipitation remote sensing from new satellite observations. The book examines a wide range of measurements from microwave (both active and passive), visible, and infrared portions of the spectrum. Contributors are experts conducting state-of-the-art research in atmospheric remote sensing using space, airborne, and ground-based datasets, focusing on supporting earth observation satellite missions for aerosol, cloud, and precipitation studies. A handy reference for scientists working in remote sensing, earth science, electromagnetics, climate physics, and space engineering. Valuable for operational forecasters, meteorologists, geospatial experts, modelers, and policymakers alike. Presents new approaches in the field, along with further research opportunities, based on the latest satellite data Focuses on how remote sensing systems can be designed/developed to solve outstanding problems in earth and atmospheric sciences Edited by a dynamic team of editors with a mixture of highly skilled and qualified authors offering world-leading expertise in the field




Remote Sensing of Atmosphere and Ocean from Space: Models, Instruments and Techniques


Book Description

This book is a collection of the lectures, held at the International Summer School ISSAOS-2000 in L'Aquila (Italy), given by invited lecturers coming from both Europe and the USA. The goal of the book is to provide a broad panorama of spaceborne remote sensing techniques, at both microwave and visible-infrared bands and by both active and passive sensors, for the retrieval of atmospheric and oceanic parameters. A significant emphasis is given to the physical modeling background, instrument potential and limitations, inversion methods and applications. Topics on international remote sensing programs and assimilation techniques into numerical weather forecast models are also touched. The main purpose of the book is to offer to young scientists, Ph.D. or equivalent students, and to all who would like to have a broad-spectrum understanding of spaceborne remote sensing capabilities, introductory material to each remote sensing topic written by the most qualified experts in the field.