Optical Remote Sensing of Ocean Hydrodynamics


Book Description

Optical Remote Sensing is one of the main technologies used in sea surface monitoring. Optical Remote Sensing of Ocean Hydrodynamics investigates and demonstrates capabilities of optical remote sensing technology for enhanced observations and detection of ocean environments. It provides extensive knowledge of physical principles and capabilities of optical observations of the oceans at high spatial resolution, 1-4m, and on the observations of surface wave hydrodynamic processes. It also describes the implementation of spectral-statistical and fusion algorithms for analyses of multispectral optical databases and establishes physics-based criteria for detection of complex wave phenomena and hydrodynamic disturbances including assessment and management of optical databases. This book explains the physical principles of high-resolution optical imagery of the ocean surface, discusses for the first time the capabilities of observing hydrodynamic processes and events, and emphasizes the integration of optical measurements and enhanced data analysis. It also covers both the assessment and the interpretation of dynamic multispectral optical databases and includes applications for advanced studies and nonacoustic detection. This book is an invaluable resource for researches, industry professionals, engineers, and students working on cross-disciplinary problems in ocean hydrodynamics, optical remote sensing of the ocean and sea surface remote sensing. Readers in the fields of geosciences and remote sensing, applied physics, oceanography, satellite observation technology, and optical engineering will learn the theory and practice of optical interactions with the ocean.




Ocean Remote Sensing Technologies


Book Description

The book provides a systematic introduction to the principles, state-of-the-art methods and applications of high frequency surface/sky wave radar and microwave marine radar, as well as an exploration of ongoing challenges in the field. It is a valuable resource for the radar and remote sensing communities.




Remote Sensing of Ocean and Coastal Environments


Book Description

Remote Sensing of Ocean and Coastal Environments advances the scientific understanding and application of technologies to address a variety of areas relating to sustainable development, including environmental systems analysis, environmental management, clean processes, green chemistry and green engineering. Through each contributed chapter, the book covers ocean remote sensing, ocean color monitoring, modeling biomass and the carbon of oceanic ecosystems, sea surface temperature (SST) and sea surface salinity, ocean monitoring for oil spills and pollutions, coastal erosion and accretion measurement. This book is aimed at those with a common interest in oceanography techniques, sustainable development and other diverse backgrounds within earth and ocean science fields. This book is ideal for academicians, scientists, environmentalists, meteorologists, environmental consultants and computing experts working in the areas of earth and ocean sciences. - Provides a comprehensive assessment of various ocean processes and their relative phenomena - Includes graphical abstract and photosets in each chapter - Presents literature reviews, case studies and applications




Oceanographic Applications of Remote Sensing


Book Description

Oceanographic Applications of Remote Sensing describes how remotely sensed data fields can be applied to help solve problems in ocean-related studies. This timely reference, written by and for oceanographers, emphasizes the application of data to particular physical, chemical, and biological processes related to the ocean and the ocean-atmosphere system. The organization of the book reflects this emphasis, with chapters arranged by process rather than by sensor characteristics. Oceanographic Applications of Remote Sensing contains comprehensive information on the application of such relevant data sets as sea surface temperature and topography, ocean circulation, sea level variability, wind speed and stress, wave height, solar radiation flux at ocean surfaces, and sea-ice characteristics and ice motion. It also discusses the reliability of remotely sensed data and provides information about the applicability of the various data sets to particular process studies. Its completeness and relevance makes Oceanographic Applications of Remote Sensing an important reference for modern studies of ocean and coupled ocean-atmosphere processes. Its unique coverage of the physics that govern satellite processes and their applications to oceanography ensures that it will remain an important reference as new satellites are introduced.




The Near-Surface Layer of the Ocean


Book Description

Until the 1980s, a tacit agreement among many physical oceanographers was that nothing deserving attention could be found in the upper few meters of the ocean. The lack of adequete knowledge about the near-surface layer of the ocean was mainly due to the fact that the widely used oceanographic instruments (such as bathythermographs, CTDs, current meters, etc.) were practically useless in the upper few meters of the ocean. Interest in the ne- surface layer of the ocean rapidly increased along with the development of remote sensing techniques. The interpretation of ocean surface signals sensed from satellites demanded thorough knowledge of upper ocean processes and their connection to the ocean interior. Despite its accessibility to the investigator, the near-surface layer of the ocean is not a simple subject of experimental study. Random, sometimes huge, vertical motions of the ocean surface due to surface waves are a serious complication for collecting quality data close to the ocean surface. The supposedly minor problem of avoiding disturbances from ships’ wakes has frustrated several generations of oceanographers attempting to take reliable data from the upper few meters of the ocean. Important practical applications nevertheless demanded action, and as a result several pioneering works in the 1970s and 1980s laid the foundation for the new subject of oceanography – the near-surface layer of the ocean.




Satellite Altimetry Over Oceans and Land Surfaces


Book Description

Satellite remote sensing, in particular by radar altimetry, is a crucial technique for observations of the ocean surface and of many aspects of land surfaces, and of paramount importance for climate and environmental studies. This book provides a state-of-the-art overview of the satellite altimetry techniques and related missions, and reviews the most-up-to date applications to ocean dynamics and sea level. It also discusses related space-based observations of the ocean surface and of the marine geoid, as well as applications of satellite altimetry to the cryosphere and land surface waters; operational oceanography and its applications to navigation, fishing and defense.




A Strategy for Active Remote Sensing Amid Increased Demand for Radio Spectrum


Book Description

Active remote sensing is the principal tool used to study and to predict short- and long-term changes in the environment of Earth - the atmosphere, the oceans and the land surfaces - as well as the near space environment of Earth. All of these measurements are essential to understanding terrestrial weather, climate change, space weather hazards, and threats from asteroids. Active remote sensing measurements are of inestimable benefit to society, as we pursue the development of a technological civilization that is economically viable, and seek to maintain the quality of our life. A Strategy for Active Remote Sensing Amid Increased Demand for Spectrum describes the threats, both current and future, to the effective use of the electromagnetic spectrum required for active remote sensing. This report offers specific recommendations for protecting and making effective use of the spectrum required for active remote sensing.




Advances in SAR Remote Sensing of Oceans


Book Description

The oceans cover approximately 71% of Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. Since the first launch of SEASAT satellite in 1978, an increasing number of SAR satellites have or will become available, such as the European Space Agency’s ERS-1/-2, ENVISAT, and Sentinel-1 series; the Canadian RADARSAT-1/-2 and the upcoming RADARSAT Constellation Mission series satellites; the Italian COSMO-SkyMed satellites, the German TERRASAR-X and TANDEM-X, and the Chinese GAOFEN-3 SAR, among others. Recently, European Space Agency has launched a new generation of SAR satellites, Sentinel-1A in 2014 and Sentinel-1B in 2016. These SAR satellites provide researchers with free and open SAR images necessary to carry out their research on the global oceans. The scope of Advances in SAR Remote Sensing of Oceans is to demonstrate the types of information that can be obtained from SAR images of the oceans, and the cutting-edge methods needed for analysing SAR images. Written by leading experts in the field, and divided into four sections, the book presents the basic principles of radar backscattering from the ocean surface; introduces the recent progresses in SAR remote sensing of dynamic coastal environment and management; discusses the state-of-the-art methods to monitor parameters or phenomena related to the dynamic ocean environment; and deals specifically with new techniques and findings of marine atmospheric boundary layer observations. Advances in SAR Remote Sensing of Oceans is a very comprehensive and up-to-date reference intended for use by graduate students, researchers, practitioners, and R&D engineers working in the vibrant field of oceans, interested to understand how SAR remote sensing can support oceanography research and applications.




Ocean Surface Waves


Book Description

This book is intended as a handbook for professionals and researchers in the areas of Physical Oceanography, Ocean and Coastal Engineering and as a text for graduate students in these fields. It presents a comprehensive study on surface ocean waves induced by wind, including basic mathematical principles, physical description of the observed phenomena, practical forecasting techniques of various wave parameters and applications in ocean and coastal engineering, all from the probabilistic and spectral points of view. The book commences with a description of mechanisms of surface wave generation by wind and its modern modeling techniques. The stochastic and probabilistic terminology is introduced and the basic statistical and spectral properties of ocean waves are developed and discussed in detail. The bulk of material deals with the prediction techniques for waves in deep and coastal waters for simple and complex ocean basins and complex bathymetry. The various prediction methods, currently used in oceanography and ocean engineering, are described and the examples of practical calculations illustrate the basic text. An appendix provides a description of the modern methods of wave measurement, including the remote sensing techniques. Also the wave simulation methods and random data analysis techniques are discussed. In the book a lot of discoveries of the Russian and East European scientists, largely unknown in the Western literature due to the language barrier, are referred to.




Introduction to Satellite Remote Sensing


Book Description

Introduction to Satellite Remote Sensing: Atmosphere, Ocean and Land Applications is the first reference book to cover ocean applications, atmospheric applications, and land applications of remote sensing. Applications of remote sensing data are finding increasing application in fields as diverse as wildlife ecology and coastal recreation management. The technology engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. The book opens with an introduction to the history of remote sensing, starting from when the phrase was first coined. It goes on to discuss the basic concepts of the various systems, including atmospheric and ocean, then closes with a detailed section on land applications. Due to the cross disciplinary nature of the authors' experience and the content covered, this is a must have reference book for all practitioners and students requiring an introduction to the field of remote sensing. - Provides study questions at the end of each chapter to aid learning - Covers all satellite remote sensing technologies, allowing readers to use the text as instructional material - Includes the most recent technologies and their applications, allowing the reader to stay up-to-date - Delves into laser sensing (LIDAR) and commercial satellites (DigitalGlobe) - Presents examples of specific satellite missions, including those in which new technology has been introduced