Chemical Engineering in the Pharmaceutical Industry


Book Description

A guide to the important chemical engineering concepts for the development of new drugs, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry offers a guide to the experimental and computational methods related to drug product design and development. The second edition has been greatly expanded and covers a range of topics related to formulation design and process development of drug products. The authors review basic analytics for quantitation of drug product quality attributes, such as potency, purity, content uniformity, and dissolution, that are addressed with consideration of the applied statistics, process analytical technology, and process control. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The contributors explore technology transfer and scale-up of batch processes that are exemplified experimentally and computationally. Written for engineers working in the field, the book examines in-silico process modeling tools that streamline experimental screening approaches. In addition, the authors discuss the emerging field of continuous drug product manufacturing. This revised second edition: Contains 21 new or revised chapters, including chapters on quality by design, computational approaches for drug product modeling, process design with PAT and process control, engineering challenges and solutions Covers chemistry and engineering activities related to dosage form design, and process development, and scale-up Offers analytical methods and applied statistics that highlight drug product quality attributes as design features Presents updated and new example calculations and associated solutions Includes contributions from leading experts in the field Written for pharmaceutical engineers, chemical engineers, undergraduate and graduation students, and professionals in the field of pharmaceutical sciences and manufacturing, Chemical Engineering in the Pharmaceutical Industry, Second Edition contains information designed to be of use from the engineer's perspective and spans information from solid to semi-solid to lyophilized drug products.




Chemical Engineering in the Pharmaceutical Industry


Book Description

A guide to the development and manufacturing of pharmaceutical products written for professionals in the industry, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry is a practical book that highlights chemistry and chemical engineering. The book’s regulatory quality strategies target the development and manufacturing of pharmaceutically active ingredients of pharmaceutical products. The expanded second edition contains revised content with many new case studies and additional example calculations that are of interest to chemical engineers. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The active pharmaceutical ingredients book puts the focus on the chemistry, chemical engineering, and unit operations specific to development and manufacturing of the active ingredients of the pharmaceutical product. The drug substance operations section includes information on chemical reactions, mixing, distillations, extractions, crystallizations, filtration, drying, and wet and dry milling. In addition, the book includes many applications of process modeling and modern software tools that are geared toward batch-scale and continuous drug substance pharmaceutical operations. This updated second edition: Contains 30new chapters or revised chapters specific to API, covering topics including: manufacturing quality by design, computational approaches, continuous manufacturing, crystallization and final form, process safety Expanded topics of scale-up, continuous processing, applications of thermodynamics and thermodynamic modeling, filtration and drying Presents updated and expanded example calculations Includes contributions from noted experts in the field Written for pharmaceutical engineers, chemical engineers, undergraduate and graduate students, and professionals in the field of pharmaceutical sciences and manufacturing, the second edition of Chemical Engineering in the Pharmaceutical Industryf ocuses on the development and chemical engineering as well as operations specific to the design, formulation, and manufacture of drug substance and products.




Principles of Process Research and Chemical Development in the Pharmaceutical Industry


Book Description

Dr. Oljan Repic clearly explains the goals and basic principles of chemical development. He explores the crucial aspects of a new process that must be considered when scaling up a research synthesis to industrial levels. And, with the help of many case studies and vignettes, he delineates each phase of the development process. Key topics include qualities of an ideal process, techniques for minimizing impurities, criteria for cost-effective synthesis of enantiopure compounds by resolutions, asymmetric synthesis and the "chiral pool" strategy, synthesis for labeling substances with hydrogen or carbon isotopes, and new drug registration requirements. This book is an invaluable reference for professionals as well as an important source of guidance and inspiration for young chemists considering entering the field.




Design & Development of Biological, Chemical, Food and Pharmaceutical Products


Book Description

Design and Development of Biological, Chemical, Food and Pharmaceutical Products has been developed from course material from the authors’ course in Chemical and Biochemical Product Design which has been running at the Technical University Denmark for years. The book draws on the authors’ years of experience in academia and industry to provide an accessible introduction to this field, approaching product development as a subject in its own right rather than a sideline of process engineering In this subject area, practical experience is the key to learning and this textbook provides examples and techniques to help the student get the best out of their projects. Design and Development of Biological, Chemical, Food and Pharma Products aims to aid students in developing good working habits for product development. Students are challenged with examples of real problems that they might encounter as engineers. Written in an informal, student-friendly tone, this unique book includes examples of real products and experiences from real companies to bring the subject alive for the student as well as placing emphasis on problem solving and team learning to set a foundation for a future in industry. The book includes an introduction to the subject of Colloid Science, which is important in product development, but neglected in many curricula. Knowledge of engineering calculus and basic physical chemistry as well as basic inorganic and organic chemistry are assumed. An invaluable text for students of product design in chemical engineering, biochemistry, biotechnology, pharmaceutical sciences and product development. Uses many examples and case studies drawn from a range of industries. Approaches product development as a subject in its own right rather than a sideline of process engineering Emphasizes a problem solving and team learning approach. Assumes some knowledge of calculus, basic physical chemistry and basic transport phenomena as well as some inorganic and organic chemistry.




Chemical Engineering in the Pharmaceutical Industry


Book Description

This book deals with various unique elements in the drug development process within chemical engineering science and pharmaceutical R&D. The book is intended to be used as a professional reference and potentially as a text book reference in pharmaceutical engineering and pharmaceutical sciences. Many of the experimental methods related to pharmaceutical process development are learned on the job. This book is intended to provide many of those important concepts that R&D Engineers and manufacturing Engineers should know and be familiar if they are going to be successful in the Pharmaceutical Industry. These include basic analytics for quantitation of reaction components– often skipped in ChE Reaction Engineering and kinetics books. In addition Chemical Engineering in the Pharmaceutical Industry introduces contemporary methods of data analysis for kinetic modeling and extends these concepts into Quality by Design strategies for regulatory filings. For the current professionals, in-silico process modeling tools that streamline experimental screening approaches is also new and presented here. Continuous flow processing, although mainstream for ChE, is unique in this context given the range of scales and the complex economics associated with transforming existing batch-plant capacity. The book will be split into four distinct yet related parts. These parts will address the fundamentals of analytical techniques for engineers, thermodynamic modeling, and finally provides an appendix with common engineering tools and examples of their applications.




Introduction to Pharmaceutical Chemical Analysis


Book Description

This textbook is the first to present a systematic introduction to chemical analysis of pharmaceutical raw materials, finished pharmaceutical products, and of drugs in biological fluids, which are carried out in pharmaceutical laboratories worldwide. In addition, this textbook teaches the fundamentals of all the major analytical techniques used in the pharmaceutical laboratory, and teaches the international pharmacopoeias and guidelines of importance for the field. It is primarily intended for the pharmacy student, to teach the requirements in “analytical chemistry” for the 5 years pharmacy curriculum, but the textbook is also intended for analytical chemists moving into the field of pharmaceutical analysis. Addresses the basic concepts, then establishes the foundations for the common analytical methods that are currently used in the quantitative and qualitative chemical analysis of pharmaceutical drugs Provides an understanding of common analytical techniques used in all areas of pharmaceutical development Suitable for a foundation course in chemical and pharmaceutical sciences Aimed at undergraduate students of degrees in Pharmaceutical Science/Chemistry Analytical Science/Chemistry, Forensic analysis Includes many illustrative examples




Research and Development in the Pharmaceutical Industry (A CBO Study)


Book Description

Perceptions that the pace of new-drug development has slowed and that the pharmaceutical industry is highly profitable have sparked concerns that significant problems loom for future drug development. This Congressional Budget Office (CBO) study-prepared at the request of the Senate Majority Leader-reviews basic facts about the drug industry's recent spending on research and development (R&D) and its output of new drugs. The study also examines issues relating to the costs of R&D, the federal government's role in pharmaceutical research, the performance of the pharmaceutical industry in developing innovative drugs, and the role of expected profits in private firms' decisions about investing in drug R&D. In keeping with CBO's mandate to provide objective, impartial analysis, the study makes no recommendations. David H. Austin prepared this report under the supervision of Joseph Kile and David Moore. Colin Baker provided valuable consultation...




Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology


Book Description

Pharmaceuticals and Personal Care Products Waste Management and Treatment Technology: Emerging Contaminants and Micro Pollutants provides the tools and techniques for identifying these contaminates and applying the most effective technology for their remediation, recovery and treatment. The consumption of pharmaceuticals and personal care products (PPCPs) has grown significantly over the last 35 years, thus increasing their potential risk to the environment. As PPCPs are very difficult to detect and remove using conventional wastewater treatment methods, this book provides solutions to a growing problem. - Includes sampling, analytical and characterization methods and technology for detecting PPCPs in the environment - Provides advanced treatment and disposal technologies for the removal of PPCPs from wastewater, surface water, landfills and septic systems - Examines the pathways of PPCPs into the environment




Pharmaceutical Process Development


Book Description

Pharmaceutical process research and development is an exacting, multidisciplinary effort but a somewhat neglected discipline in the chemical curriculum. This book presents an overview of the many facets of process development and how recent advances in synthetic organic chemistry, process technology and chemical engineering have impacted on the manufacture of pharmaceuticals. In 15 concise chapters the book covers such diverse subjects as route selection and economics, the interface with medicinal chemistry, the impact of green chemistry, safety, the crucial role of physical organic measurements in gaining a deeper understanding of chemical behaviour, the role of the analyst, new tools and innovations in reactor design, purification and separation, solid state chemistry and its role in formulation. The book ends with an assessment of future trends and challenges. The book provides a valuable overview of: both early and late stage chemical development, how safe and scaleable synthetic routes are designed, selected and developed, the importance of the chemical engineering, analytical and manufacturing interfaces, the key enabling technologies, including catalysis and biocatalysis, the importance of the green chemical perspective and solid form issues. The book, written and edited by experts in the field, is a contemporary, holistic treatise, with a logical sequence for process development and mini-case histories within the chapters to bring alive different aspects of the process. It is completely pharmaceutical themed, encompassing all essential aspects, from route and reagent selection to manufacture of the active compound. The book is aimed at both graduates and postgraduates interested in a career in the pharmaceutical industry. It informs them about the breadth of the work carried out in chemical research and development departments, and gives them a feel for the challenges involved in the job. The book is also of value to academics who often understand the drug discovery arena, but have far less appreciation of the drug development area, and are thus unable to advise their students about the relative merits of careers in chemical development versus discovery.




The Changing Economics of Medical Technology


Book Description

Americans praise medical technology for saving lives and improving health. Yet, new technology is often cited as a key factor in skyrocketing medical costs. This volume, second in the Medical Innovation at the Crossroads series, examines how economic incentives for innovation are changing and what that means for the future of health care. Up-to-date with a wide variety of examples and case studies, this book explores how payment, patent, and regulatory policiesâ€"as well as the involvement of numerous government agenciesâ€"affect the introduction and use of new pharmaceuticals, medical devices, and surgical procedures. The volume also includes detailed comparisons of policies and patterns of technological innovation in Western Europe and Japan. This fact-filled and practical book will be of interest to economists, policymakers, health administrators, health care practitioners, and the concerned public.