Theory of Association Schemes


Book Description

This book is a concept-oriented treatment of the structure theory of association schemes. The generalization of Sylow’s group theoretic theorems to scheme theory arises as a consequence of arithmetical considerations about quotient schemes. The theory of Coxeter schemes (equivalent to the theory of buildings) emerges naturally and yields a purely algebraic proof of Tits’ main theorem on buildings of spherical type.




An Algebraic Approach to Association Schemes


Book Description

The primary object of the lecture notes is to develop a treatment of association schemes analogous to that which has been so successful in the theory of finite groups. The main chapters are decomposition theory, representation theory, and the theory of generators. Tits buildings come into play when the theory of generators is developed. Here, the buildings play the role which, in group theory, is played by the Coxeter groups. - The text is intended for students as well as for researchers in algebra, in particular in algebraic combinatorics.




Algebraic Combinatorics


Book Description

This series is devoted to the publication of high-level monographs which cover the whole spectrum of current discrete mathematics and its applications in various fields. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of discrete mathematics. Contributions which are on the borderline of discrete mathematics and related fields and which stimulate further research at the crossroads of these areas are particularly welcome.




Group Matrices, Group Determinants and Representation Theory


Book Description

This book sets out an account of the tools which Frobenius used to discover representation theory for nonabelian groups and describes its modern applications. It provides a new viewpoint from which one can examine various aspects of representation theory and areas of application, such as probability theory and harmonic analysis. For example, the focal objects of this book, group matrices, can be thought of as a generalization of the circulant matrices which are behind many important algorithms in information science. The book is designed to appeal to several audiences, primarily mathematicians working either in group representation theory or in areas of mathematics where representation theory is involved. Parts of it may be used to introduce undergraduates to representation theory by studying the appealing pattern structure of group matrices. It is also intended to attract readers who are curious about ideas close to the heart of group representation theory, which do not usually appear in modern accounts, but which offer new perspectives.




Theory of Association Schemes


Book Description

This book is a concept-oriented treatment of the structure theory of association schemes. The generalization of Sylow’s group theoretic theorems to scheme theory arises as a consequence of arithmetical considerations about quotient schemes. The theory of Coxeter schemes (equivalent to the theory of buildings) emerges naturally and yields a purely algebraic proof of Tits’ main theorem on buildings of spherical type.




Representations and Characters of Groups


Book Description

This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians.




An Introduction to Quasigroups and Their Representations


Book Description

Collecting results scattered throughout the literature into one source, An Introduction to Quasigroups and Their Representations shows how representation theories for groups are capable of extending to general quasigroups and illustrates the added depth and richness that result from this extension. To fully understand representation theory,




Handbook of Combinatorics


Book Description

Handbook of Combinatorics




Coding Theory and Design Theory


Book Description

This IMA Volume in Mathematics and its Applications Coding Theory and Design Theory Part I: Coding Theory is based on the proceedings of a workshop which was an integral part of the 1987-88 IMA program on APPLIED COMBINATORICS. We are grateful to the Scientific Committee: Victor Klee (Chairman), Daniel Kleitman, Dijen Ray-Chaudhuri and Dennis Stanton for planning and implementing an exciting and stimulating year long program. We especially thank the Workshop Organizer, Dijen Ray-Chaudhuri, for organizing a workshop which brought together many of the major figures in a variety of research fields in which coding theory and design theory are used. A vner Friedman Willard Miller, Jr. PREFACE Coding Theory and Design Theory are areas of Combinatorics which found rich applications of algebraic structures. Combinatorial designs are generalizations of finite geometries. Probably, the history of Design Theory begins with the 1847 pa per of Reverand T. P. Kirkman "On a problem of Combinatorics", Cambridge and Dublin Math. Journal. The great Statistician R. A. Fisher reinvented the concept of combinatorial 2-design in the twentieth century. Extensive application of alge braic structures for construction of 2-designs (balanced incomplete block designs) can be found in R. C. Bose's 1939 Annals of Eugenics paper, "On the construction of balanced incomplete block designs". Coding Theory and Design Theory are closely interconnected. Hamming codes can be found (in disguise) in R. C. Bose's 1947 Sankhya paper "Mathematical theory of the symmetrical factorial designs".




Representation Theory and Harmonic Analysis of Wreath Products of Finite Groups


Book Description

This book presents an introduction to the representation theory of wreath products of finite groups and harmonic analysis on the corresponding homogeneous spaces. The reader will find a detailed description of the theory of induced representations and Clifford theory, focusing on a general formulation of the little group method. This provides essential tools for the determination of all irreducible representations of wreath products of finite groups. The exposition also includes a detailed harmonic analysis of the finite lamplighter groups, the hyperoctahedral groups, and the wreath product of two symmetric groups. This relies on the generalised Johnson scheme, a new construction of finite Gelfand pairs. The exposition is completely self-contained and accessible to anyone with a basic knowledge of representation theory. Plenty of worked examples and several exercises are provided, making this volume an ideal textbook for graduate students. It also represents a useful reference for more experienced researchers.