Representations and Invariants of the Classical Groups


Book Description

More than half a century has passed since Weyl's 'The Classical Groups' gave a unified picture of invariant theory. This book presents an updated version of this theory together with many of the important recent developments. As a text for those new to the area, this book provides an introduction to the structure and finite-dimensional representation theory of the complex classical groups that requires only an abstract algebra course as a prerequisite. The more advanced reader will find an introduction to the structure and representations of complex reductive algebraic groups and their compact real forms. This book will also serve as a reference for the main results on tensor and polynomial invariants and the finite-dimensional representation theory of the classical groups. It will appeal to researchers in mathematics, statistics, physics and chemistry whose work involves symmetry groups, representation theory, invariant theory and algebraic group theory.




The Subgroup Structure of the Finite Classical Groups


Book Description

With the classification of the finite simple groups complete, much work has gone into the study of maximal subgroups of almost simple groups. In this volume the authors investigate the maximal subgroups of the finite classical groups and present research into these groups as well as proving many new results. In particular, the authors develop a unified treatment of the theory of the 'geometric subgroups' of the classical groups, introduced by Aschbacher, and they answer the questions of maximality and conjugacy and obtain the precise shapes of these groups. Both authors are experts in the field and the book will be of considerable value not only to group theorists, but also to combinatorialists and geometers interested in these techniques and results. Graduate students will find it a very readable introduction to the topic and it will bring them to the very forefront of research in group theory.




Representations of Finite Groups of Lie Type


Book Description

An up-to-date and self-contained introduction based on a graduate course taught at the University of Paris.




Representation Theory of Finite Groups


Book Description

Representation Theory of Finite Groups is a five chapter text that covers the standard material of representation theory. This book starts with an overview of the basic concepts of the subject, including group characters, representation modules, and the rectangular representation. The succeeding chapters describe the features of representation theory of rings with identity and finite groups. These topics are followed by a discussion of some of the application of the theory of characters, along with some classical theorems. The last chapter deals with the construction of irreducible representations of groups. This book will be of great value to graduate students who wish to acquire some knowledge of representation theory.




Representation Theory of Finite Groups


Book Description

This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.




Groups and Characters


Book Description

An authoritative, full-year course on both group theory and ordinary character theory--essential tools for mathematics and the physical sciences One of the few treatments available combining both group theory and character theory, Groups and Characters is an effective general textbook on these two fundamentally connected subjects. Presuming only a basic knowledge of abstract algebra as in a first-year graduate course, the text opens with a review of background material and then guides readers carefully through several of the most important aspects of groups and characters, concentrating mainly on finite groups. Challenging yet accessible, Groups and Characters features: * An extensive collection of examples surveying many different types of groups, including Sylow subgroups of symmetric groups, affine groups of fields, the Mathieu groups, and symplectic groups * A thorough, easy-to-follow discussion of Polya-Redfield enumeration, with applications to combinatorics * Inclusive explorations of the transfer function and normal complements, induction and restriction of characters, Clifford theory, characters of symmetric and alternating groups, Frobenius groups, and the Schur index * Illuminating accounts of several computational aspects of group theory, such as the Schreier-Sims algorithm, Todd-Coxeter coset enumeration, and algorithms for generating character tables As valuable as Groups and Characters will prove as a textbook for mathematicians, it has broader applications. With chapters suitable for use as independent review units, along with a full bibliography and index, it will be a dependable general reference for chemists, physicists, and crystallographers.




The Maximal Subgroups of the Low-Dimensional Finite Classical Groups


Book Description

This book classifies the maximal subgroups of the almost simple finite classical groups in dimension up to 12; it also describes the maximal subgroups of the almost simple finite exceptional groups with socle one of Sz(q), G2(q), 2G2(q) or 3D4(q). Theoretical and computational tools are used throughout, with downloadable Magma code provided. The exposition contains a wealth of information on the structure and action of the geometric subgroups of classical groups, but the reader will also encounter methods for analysing the structure and maximality of almost simple subgroups of almost simple groups. Additionally, this book contains detailed information on using Magma to calculate with representations over number fields and finite fields. Featured within are previously unseen results and over 80 tables describing the maximal subgroups, making this volume an essential reference for researchers. It also functions as a graduate-level textbook on finite simple groups, computational group theory and representation theory.




Representations of Finite and Compact Groups


Book Description

This text is a comprehensive pedagogical presentation of the theory of representation of finite and compact Lie groups. It considers both the general theory and representation of specific groups. Representation theory is discussed on the following types of groups: finite groups of rotations, permutation groups, and classical compact semisimple Lie groups. Along the way, the structure theory of the compact semisimple Lie groups is exposed. This is aimed at research mathematicians and graduate students studying group theory.




A Course in Finite Group Representation Theory


Book Description

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.