Water-temperature Effects on Stage-discharge Relations in Large Alluvial Rivers


Book Description

Observations in natural rivers as well as experimental laboratory streams indicate that water temperatures significantly affect stream stage-discharge relations, bed forms, and sediment-transport rates. However, various investigators in this field have reached conclusions that appear to be contradictory, and the complex phenomena involved are not yet fully understood. With a view to clarifying further the water-temperature effects indicated by field measurements, the Committee on Channel Stabilization canvassed the Division offices of the Corps of Engineers for available historic data on discharge and water-temperature measurements in large alluvial rivers. The basic data received on the Mississippi, Missouri, and Arkansas Rivers were analyzed to determine temperature effects on the stage-discharge relations at 31 river stages at 18 gaging stations. The tabulated basic field data are included in this report. (Author).




Biogeochemistry of Wetlands


Book Description

The globally important nature of wetland ecosystems has led to their increased protection and restoration as well as their use in engineered systems. Underpinning the beneficial functions of wetlands are a unique suite of physical, chemical, and biological processes that regulate elemental cycling in soils and the water column. This book provides an in-depth coverage of these wetland biogeochemical processes related to the cycling of macroelements including carbon, nitrogen, phosphorus, and sulfur, secondary and trace elements, and toxic organic compounds. In this synthesis, the authors combine more than 100 years of experience studying wetlands and biogeochemistry to look inside the black box of elemental transformations in wetland ecosystems. This new edition is updated throughout to include more topics and provide an integrated view of the coupled nature of biogeochemical cycles in wetland systems. The influence of the elemental cycles is discussed at a range of scales in the context of environmental change including climate, sea level rise, and water quality. Frequent examples of key methods and major case studies are also included to help the reader extend the basic theories for application in their own system. Some of the major topics discussed are: Flooded soil and sediment characteristics Aerobic-anaerobic interfaces Redox chemistry in flooded soil and sediment systems Anaerobic microbial metabolism Plant adaptations to reducing conditions Regulators of organic matter decomposition and accretion Major nutrient sources and sinks Greenhouse gas production and emission Elemental flux processes Remediation of contaminated soils and sediments Coupled C-N-P-S processes Consequences of environmental change in wetlands# The book provides the foundation for a basic understanding of key biogeochemical processes and its applications to solve real world problems. It is detailed, but also assists the reader with box inserts, artfully designed diagrams, and summary tables all supported by numerous current references. This book is an excellent resource for senior undergraduates and graduate students studying ecosystem biogeochemistry with a focus in wetlands and aquatic systems.







River Ice Breakup


Book Description

The breakup of a river ice cover can be both fascinating and perilous, owing to ever-changing ice conditions and dynamic processes that sometimes lead to extreme flood events caused by ice jams. Though much progress has been made recently in the study of ice jams, less has been achieved on the more general, and more complex, problem of how to predict the entire breakup process, from the first ice movement to the last ice effect on river stage. This type of knowledge is essential to determining when and where ice jam threats may develop and when they may release and generate steep flood waves that can trigger ice runs and jamming further downstream. In turn, such understanding is invaluable to natural hazard reduction, ecosystem conservation and protection, and adaptation to climatic impacts. This book combines the existing information, previously scattered in various journals, conference proceedings, and technical reports. It contains contributions by several authors to achieve a comprehensive and balanced coverage, including qualitative and quantitative descriptions of relevant physical processes, forecasting methods and flood-frequency assessments, as well as ecological impacts and climatic considerations. The book should be of interest to readers of different backgrounds, both beginners and specialists. -- Publisher's website.










Technical Report


Book Description




CRREL Report


Book Description




NBS Special Publication


Book Description