Resolvent, Heat Kernel, and Torsion under Degeneration to Fibered Cusps


Book Description

Manifolds with fibered cusps are a class of complete non-compact Riemannian manifolds including many examples of locally symmetric spaces of rank one. We study the spectrum of the Hodge Laplacian with coefficients in a flat bundle on a closed manifold undergoing degeneration to a manifold with fibered cusps. We obtain precise asymptotics for the resolvent, the heat kernel, and the determinant of the Laplacian. Using these asymptotics we obtain a topological description of the analytic torsion on a manifold with fibered cusps in terms of the R-torsion of the underlying manifold with boundary.




Resolvent, Heat Kernel, and Torsion Under Degeneration to Fibered Cusps


Book Description

Fibered cusp surgery metrics -- Pseudodifferential operator calculi -- Resolvent construction -- Projection onto the eigenspace of small eigenvalues -- Surgery heat space -- Solving the heat equation -- The R-torsion on manifolds with boundary -- The intersection R-torsion of Dar and L2-cohomology -- Analytic torsion conventions -- Asymptotics of analytic torsion -- A Cheeger-Muller theorem for fibered cusp manifolds.










Geometric and Computational Spectral Theory


Book Description

A co-publication of the AMS and Centre de Recherches Mathématiques The book is a collection of lecture notes and survey papers based on the mini-courses given by leading experts at the 2015 Séminaire de Mathématiques Supérieures on Geometric and Computational Spectral Theory, held from June 15–26, 2015, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. The volume covers a broad variety of topics in spectral theory, highlighting its connections to differential geometry, mathematical physics and numerical analysis, bringing together the theoretical and computational approaches to spectral theory, and emphasizing the interplay between the two.
















Cubic Action of a Rank One Group


Book Description

View the abstract.