Resolving Spectral Mixtures


Book Description

Resolving Spectral Mixtures: With Applications from Ultrafast Time-Resolved Spectroscopy to Superresolution Imaging offers a comprehensive look into the most important models and frameworks essential to resolving the spectral unmixing problem—from multivariate curve resolution and multi-way analysis to Bayesian positive source separation and nonlinear unmixing. Unravelling total spectral data into the contributions from individual unknown components with limited prior information is a complex problem that has attracted continuous interest for almost four decades. Spectral unmixing is a topic of interest in statistics, chemometrics, signal processing, and image analysis. For decades, researchers from these fields were often unaware of the work in other disciplines due to their different scientific and technical backgrounds and interest in different objects or samples. This led to the development of quite different approaches to solving the same problem. This multi-authored book will bridge the gap between disciplines with contributions from a number of well-known and strongly active chemometric and signal processing research groups. Among chemists, multivariate curve resolution methods are preferred to extract information about the nature, amount, and location in time (process) and space (imaging and microscopy) of chemical constituents in complex samples. In signal processing, assumptions are usually around statistical independence of the extracted components. However, the chapters include the complexity of the spectral data to be unmixed as well as dimensionality and size of the data sets. Advanced spectroscopy is the key thread linking the different chapters. Applications cover a large part of the electromagnetic spectrum. Time-resolution ranges from femtosecond to second in process spectroscopy and spatial resolution covers the submicronic to macroscopic scale in hyperspectral imaging. Demonstrates how and why data analysis, signal processing, and chemometrics are essential to the spectral unmixing problem Guides the reader through the fundamentals and details of the different methods Presents extensive plots, graphical representations, and illustrations to help readers understand the features of different techniques and to interpret results Bridges the gap between disciplines with contributions from a number of well-known and highly active chemometric and signal processing research groups




Hyperspectral Imaging


Book Description

Hyperspectral Imaging, Volume 32, presents a comprehensive exploration of the different analytical methodologies applied on hyperspectral imaging and a state-of-the-art analysis of applications in different scientific and industrial areas. This book presents, for the first time, a comprehensive collection of the main multivariate algorithms used for hyperspectral image analysis in different fields of application. The benefits, drawbacks and suitability of each are fully discussed, along with examples of their application. Users will find state-of-the art information on the machinery for hyperspectral image acquisition, along with a critical assessment of the usage of hyperspectral imaging in diverse scientific fields. - Provides a comprehensive roadmap of hyperspectral image analysis, with benefits and considerations for each method discussed - Covers state-of-the-art applications in different scientific fields - Discusses the implementation of hyperspectral devices in different environments




21st Century Nanoscience


Book Description

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.




21st Century Nanoscience - A Handbook


Book Description

This up-to-date reference is the most comprehensive summary of the field of nanoscience and its applications. It begins with fundamental properties at the nanoscale and then goes well beyond into the practical aspects of the design, synthesis, and use of nanomaterials in various industries. It emphasizes the vast strides made in the field over the past decade – the chapters focus on new, promising directions as well as emerging theoretical and experimental methods. The contents incorporate experimental data and graphs where appropriate, as well as supporting tables and figures with a tutorial approach.




Comprehensive Chemometrics


Book Description

Comprehensive Chemometrics, Second Edition, Four Volume Set features expanded and updated coverage, along with new content that covers advances in the field since the previous edition published in 2009. Subject of note include updates in the fields of multidimensional and megavariate data analysis, omics data analysis, big chemical and biochemical data analysis, data fusion and sparse methods. The book follows a similar structure to the previous edition, using the same section titles to frame articles. Many chapters from the previous edition are updated, but there are also many new chapters on the latest developments. Presents integrated reviews of each chemical and biological method, examining their merits and limitations through practical examples and extensive visuals Bridges a gap in knowledge, covering developments in the field since the first edition published in 2009 Meticulously organized, with articles split into 4 sections and 12 sub-sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Written by academics and practitioners from various fields and regions to ensure that the knowledge within is easily understood and applicable to a large audience Presents integrated reviews of each chemical and biological method, examining their merits and limitations through practical examples and extensive visuals Bridges a gap in knowledge, covering developments in the field since the first edition published in 2009 Meticulously organized, with articles split into 4 sections and 12 sub-sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Written by academics and practitioners from various fields and regions to ensure that the knowledge within is easily understood and applicable to a large audience




High Spatial Resolution Remote Sensing


Book Description

High spatial resolution remote sensing is an area of considerable current interest and builds on developments in object-based image analysis, commercial high-resolution satellite sensors, and UAVs. It captures more details through high and very high resolution images (10 to 100 cm/pixel). This unprecedented level of detail offers the potential extraction of a range of multi-resource management information, such as precision farming, invasive and endangered vegetative species delineation, forest gap sizes and distribution, locations of highly valued habitats, or sub-canopy topographic information. Information extracted in high spatial remote sensing data right after a devastating earthquake can help assess the damage to roads and buildings and aid in emergency planning for contact and evacuation. To effectively utilize information contained in high spatial resolution imagery, High Spatial Resolution Remote Sensing: Data, Analysis, and Applications addresses some key questions: What are the challenges of using new sensors and new platforms? What are the cutting-edge methods for fine-level information extraction from high spatial resolution images? How can high spatial resolution data improve the quantification and characterization of physical-environmental or human patterns and processes? The answers are built in three separate parts: (1) data acquisition and preprocessing, (2) algorithms and techniques, and (3) case studies and applications. They discuss the opportunities and challenges of using new sensors and platforms and high spatial resolution remote sensing data and recent developments with a focus on UAVs. This work addresses the issues related to high spatial image processing and introduces cutting-edge methods, summarizes state-of-the-art high spatial resolution applications, and demonstrates how high spatial resolution remote sensing can support the extraction of detailed information needed in different systems. Using various high spatial resolution data, the third part of this book covers a range of unique applications, from grasslands to wetlands, karst areas, and cherry orchard trees.




Experimental Approaches of NMR Spectroscopy


Book Description

This book describes the advanced developments in methodology and applications of NMR spectroscopy to life science and materials science. Experts who are leaders in the development of new methods and applications of life and material sciences have contributed an exciting range of topics that cover recent advances in structural determination of biological and material molecules, dynamic aspects of biological and material molecules, and development of novel NMR techniques, including resolution and sensitivity enhancement. First, this book particularly emphasizes the experimental details for new researchers to use NMR spectroscopy and pick up the potentials of NMR spectroscopy. Second, the book is designed for those who are involved in either developing the technique or expanding the NMR application fields by applying them to specific samples. Third, the Nuclear Magnetic Resonance Society of Japan has organized this book not only for NMR members of Japan but also for readers worldwide who are interested in using NMR spectroscopy extensively.




Fundamentals and Applications of Multiway Data Analysis


Book Description

Fundamentals and Applications of Multiway Data Analysis provides comprehensive coverage of the main aspects of multiway analysis, including selected applications that can resolve complex analytical chemistry problems. This book follows on from Fundamentals and Analytical Applications of Multiway Calibration, (2015) by addressing new theoretical analysis and applications on subjects beyond multiway calibration and devoted to the analysis of multiway data for other purposes. Specifically, this new volume presents researchers a set of effective tools they can use to obtain the maximum information from instrumental data. This book includes the most advanced techniques, methods and algorithms related to multiway modelling for solving calibration and classification tasks, and the way they can be applied. This book collects contributions from a selected number of well-known and active chemometric research groups across the world, each covering one or more subjects where their expertise is recognized and appreciated. - Includes chapters written by renowned international authors, all currently active in the subject field - Presents coverage of all the main aspects of multi-way analytical data analysis, concerning the two main areas of interest: data generation and algorithmic models for data processing - Provides up-to-date material with reference to current literature on the subject




Chemometrics-based Spectroscopy for Pharmaceutical and Biomedical Analysis


Book Description

Chemometrics is the application of mathematics and statistics to chemical data in order to design or select optimal experimental procedures, to provide maximum relevant information, and to obtain knowledge about systems under study. This chemical discipline has constantly developed to become a mature field of Analytical Chemistry after its inception in the 1970s. The utility and versatility of chemometric techniques enable spectroscopists to perform multidimensional classification and/or calibration of spectral data that make identification and quantification of analytes in complex mixtures possible.Wavelets are mathematical functions that cut up data into different frequency components, and then study each component with a resolution matched to its scale. They are now being adapted for a vast number of signal processing due to their unprecedented success in terms of asymptotic optimality, spatial adaptivity and computational efficiency. In analytical chemistry, they have increasingly shown great applicability and have been preferred over existing signal processing algorithms in noise removal, resolution enhancement, data compression and chemometrics modeling in chemical studies.The aim of this Research Topic is to present state-of-the-art applications of chemometrics, in the field of spectroscopy, with special attention to the use of wavelet transform. Both reviews and original research articles on pharmaceutical and biomedical analysis are welcome in the specialty section Analytical Chemistry.




Process Systems Engineering for Pharmaceutical Manufacturing


Book Description

Process Systems Engineering for Pharmaceutical Manufacturing: From Product Design to Enterprise-Wide Decisions, Volume 41, covers the following process systems engineering methods and tools for the modernization of the pharmaceutical industry: computer-aided pharmaceutical product design and pharmaceutical production processes design/synthesis; modeling and simulation of the pharmaceutical processing unit operation, integrated flowsheets and applications for design, analysis, risk assessment, sensitivity analysis, optimization, design space identification and control system design; optimal operation, control and monitoring of pharmaceutical production processes; enterprise-wide optimization and supply chain management for pharmaceutical manufacturing processes. Currently, pharmaceutical companies are going through a paradigm shift, from traditional manufacturing mode to modernized mode, built on cutting edge technology and computer-aided methods and tools. Such shifts can benefit tremendously from the application of methods and tools of process systems engineering. - Introduces Process System Engineering (PSE) methods and tools for discovering, developing and deploying greener, safer, cost-effective and efficient pharmaceutical production processes - Includes a wide spectrum of case studies where different PSE tools and methods are used to improve various pharmaceutical production processes with distinct final products - Examines the future benefits and challenges for applying PSE methods and tools to pharmaceutical manufacturing