Reviews in Ring Theory


Book Description




Rings and Things and a Fine Array of Twentieth Century Associative Algebra


Book Description

This book surveys more than 125 years of aspects of associative algebras, especially ring and module theory. It is the first to probe so extensively such a wealth of historical development. Moreover, the author brings the reader up to date, in particular through his report on the subject in the second half of the twentieth century. Included in the book are certain categorical properties from theorems of Frobenius and Stickelberger on the primary decomposition of finite Abelian formulations of the latter by Krull, Goldman, and others; Maschke's theorem on the representation theory of finite groups over a field; and the fundamental theorems of Wedderburn on the structure of finite dimensional algebras Goldie, and others. A special feature of the book is the in-depth study of rings with chain condition on annihilator ideals pioneered by Noether, Artin, and Jacobson and refined and extended by many later mathematicians. Two of the author's prior works, Algebra: Rings, Modules and Categories, I and II (Springer-Verlag, 1973), are devoted to the development of modern associative algebra and ring and module theory. Those bibliography of over 1,600 references and is exhaustively indexed. In addition to the mathematical survey, the author gives candid and descriptive impressions of the last half of the twentieth century in ''Part II: Snapshots of fellow graduate students at the University of Kentucky and at Purdue, Faith discusses his Fulbright-Nato Postdoctoral at Heidelberg and at the Institute for Advanced Study (IAS) at Princeton, his year as a visiting scholar at Berkeley, and the many acquaintances he met there and in subsequent travels in India, Europe, and most recently, Barcelona. Comments on the first edition: ''Researchers in algebra should find it both full references as to the origin and development of the theorem ... I know of no other work in print which does this as thoroughly and as broadly.'' --John O'Neill, University of Detroit at Mercy '' 'Part II: Snapshots of Mathematicians of my age and younger will relish reading 'Snapshots'.'' --James A. Huckaba, University of Missouri-Columbia




Lectures on Modules and Rings


Book Description

This new book can be read independently from the first volume and may be used for lecturing, seminar- and self-study, or for general reference. It focuses more on specific topics in order to introduce readers to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. User-friendly with its abundance of examples illustrating the theory at virtually every step, the volume contains a large number of carefully chosen exercises to provide newcomers with practice, while offering a rich additional source of information to experts. A direct approach is used in order to present the material in an efficient and economic way, thereby introducing readers to a considerable amount of interesting ring theory without being dragged through endless preparatory material.




Selected Papers and Other Writings


Book Description

It is not often that one gets to write a preface to a collection of one's own papers. The most urgent task is to thank the people who made this book possible. That means first of all Hy Bass who, on behalf of Springer-Verlag, approached me about the idea. The late Walter Kaufmann-Biihler was very encouraging; Paulo Ribenboim helped in an important way; and Ina Lindemann saw the project through with tact and skill that I deeply appreciate. My wishes have been indulged in two ways. First, I was allowed to follow up each selected paper with an afterthought. Back in my student days I became aware of the Gesammelte Mathematische Werke of Dedekind, edited by Fricke, Noether, and Ore. I was impressed by the editors' notes that followed most of the papers and found them very usefuL A more direct model was furnished by the collected papers of Lars Ahlfors, in which the author himself supplied afterthoughts for each paper or group of papers. These were tough acts to follow, but I hope that some readers will find at least some of my afterthoughts interesting. Second, I was permitted to add eight previously unpublished items. My model here, to a certain extent, was the charming little book, A Mathematician's Miscel lany by J. E. Littlewood. In picking these eight I had quite a selection to make -from fourteen loose-leaf notebooks of such writings. Here again I hope that at least some will be found to be of interest.










Algebra, $K$-Theory, Groups, and Education


Book Description

This volume includes expositions of key developments over the past four decades in commutative and non-commutative algebra, algebraic $K$-theory, infinite group theory, and applications of algebra to topology. Many of the articles are based on lectures given at a conference at Columbia University honoring the 65th birthday of Hyman Bass. Important topics related to Bass's mathematical interests are surveyed by leading experts in the field. Of particular note is a professional autobiography of Professor Bass, and an article by Deborah Ball on mathematical education. The range of subjects covered in the book offers a convenient single source for topics in the field.







Mathematical Reviews


Book Description




A First Course in Noncommutative Rings


Book Description

One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.