Lifeline Earthquake Engineering


Book Description

This volume presents recent advances in research, practice, post earthquake investigation, and public policy in lifeline earthquake engineering as a discipline and as a component of infrastructure rehabilitation. Written by utility engineers, consultants, managers, and transportation agency personnel from various nations, papers review newer emerging topics of lifeline interaction and socio-economic effects, as well as hazard assessment methods, analysis procedures, and design approaches. Topics range from bridge analysis and rehabilitation to bridge earthquake damage assessment, electric power and communications to gas and liquid fuels. Case studies and papers detail the seismic assessment of offshore pipelines; above ground pipeline response to random ground motion; bridge prioritization for emergency responses; inspection and rehabilitation of tunnels across faults; and spectral characteristics of vertical ground motion in the Northridge and other earthquakes.




Practical Lessons from the Loma Prieta Earthquake


Book Description

The Loma Prieta earthquake struck the San Francisco area on October 17, 1989, causing 63 deaths and $10 billion worth of damage. This book reviews existing research on the Loma Prieta quake and draws from it practical lessons that could be applied to other earthquake-prone areas of the country. The volume contains seven keynote papers presented at a symposium on the earthquake and includes an overview written by the committee offering recommendations to improve seismic safety and earthquake awareness in parts of the country susceptible to earthquakes.




Geology of the San Francisco Bay Region


Book Description

"You can't really know the place where you live until you know the shapes and origins of the land around you. To feel truly at home in the Bay Area, read Doris Sloan's intriguing stories of this region's spectacular, quirky landscapes."—Hal Gilliam, author of Weather of the San Francisco Bay Region "This is a fascinating look at some of the world's most complex and engaging geology. I highly recommend this book to anyone interested in an understanding of the beautiful landscape and dynamic geology of the Bay Area."—Mel Erskine, geological consultant "This accessible summary of San Francisco Bay Area geology is particularly timely. We are living in an age where we must deal with our impact on our environment and the impact of the environment on us. Earthquake hazards, and to a lesser extent landslide hazards, are well known, but the public also needs to be aware of other important engineering and environmental impacts and geologic resources. This book will allow Bay Area residents to make more intelligent decisions about the geological issues affecting their lives."—John Wakabayashi, geological consultant







National Earthquake Resilience


Book Description

The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.




Seismology and Structure of the Earth


Book Description

Treatise on Geophysics: Seismology and Structure of the Earth, Volume 1, provides a comprehensive review of the state of knowledge on the Earths structure and earthquakes. It addresses various aspects of structural seismology and its applications to other fields of Earth sciences. The book is organized into four parts. The first part principally covers theoretical developments and seismic data analysis techniques from the end of the nineteenth century until the present, with the main emphasis on the development of instrumentation and its deployment. The second part reviews the status of knowledge on the structure of the Earths shallow layers, starting with a global review of the Earth's crustal structure. The third part focuses on the Earth's deep structure, divided into its main units: the upper mantle, the transition zone and upper-mantle discontinuities, the D region at the base of the mantle, and the Earth's core. The fourth part comprises two chapters which discuss constraints on Earth structure from fields other than seismology: mineral physics and geodynamics. - Self-contained volume starts with an overview of the subject then explores each topic with in depth detail - Extensive reference lists and cross references with other volumes to facilitate further research - Full-color figures and tables support the text and aid in understanding - Content suited for both the expert and non-expert




Fire Following Earthquake


Book Description

Prepared by the Technical Council on Lifeline Earthquake Engineering of ASCE. This TCLEE Monograph covers the entire range of fire following earthquake (FFE) issues, from historical fires to 20th-century fires in Kobe, San Francisco, Oakland, Berkeley, and Northridge. FFE has the potential of causing catastrophic losses in the United States, Japan, Canada, New Zealand, and other seismically active countries with wood houses. This comprehensive book on FFE and urban conflagrations provides state-of-the-practice insight on unique issues, such as large diameter flex hose applications by fire and water departments. Topics include: History of past fires; Computer modeling of fire spread in the post-earthquake urban environment; Concurrent damage and fire impacts for water, power gas, communication and transportation systems; Examples of reliable water systems built or designed in San Francisco, Vancouver, Berkeley, and Kyoto; Use of large diameter (5 in.) and ultralarge diameter (12 in.) flex hose for fire fighting and water restoration; and Cost-effectiveness of various FFE mitigation strategies, with a detailed benefit-cost model. Water utility engineers, fire fighting professionals, and emergency response planners will benefit from reading this book.




Designing for Earthquakes


Book Description

This full color manual is intended to explain the principles of seismic design for those without a technical background in engineering and seismology. The primary intended audience is that of architects, and includes practicing architects, architectural students and faculty in architectural schools who teach structures and seismic design. For this reason the text and graphics are focused on those aspects of seismic design that are important for the architect to know.




Living on an Active Earth


Book Description

The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.