Revolutions and Continuity in Greek Mathematics


Book Description

This volume brings together a number of leading scholars working in the field of ancient Greek mathematics to present their latest research. In their respective area of specialization, all contributors offer stimulating approaches to questions of historical and historiographical ‘revolutions’ and ‘continuity’. Taken together, they provide a powerful lens for evaluating the applicability of Thomas Kuhn’s ideas on ‘scientific revolutions’ to the discipline of ancient Greek mathematics. Besides the latest historiographical studies on ‘geometrical algebra’ and ‘premodern algebra’, the reader will find here some papers which offer new insights into the controversial relationship between Greek and pre-Hellenic mathematical practices. Some other contributions place emphasis on the other edge of the historical spectrum, by exploring historical lines of ‘continuity’ between ancient Greek, Byzantine and post-Hellenic mathematics. The terminology employed by Greek mathematicians, along with various non-textual and material elements, is another topic which some of the essays in the volume explore. Finally, the last three articles focus on a traditionally rich source on ancient Greek mathematics; namely the works of Plato and Aristotle.




Revolutions in Mathematics


Book Description

The essays in this book provide the first comprehensive treatment of the concept of revolution in mathematics. In 1962 an exciting discussion of revolutions in the natural sciences was prompted by the publication of Kuhn's The Structure of Scientific Revolutions. A fascinating but little knownoffshoot of this debate was begun in the USA in the mid-1970s: can the concept of revolutions be applied to mathematics as well as science? Michael Crowe declared that revolutions never occur in mathematics, while Joseph Dauben argued that there have been mathematical revolutions and gave someexamples.The original papers of Crowe, Dauben, and Mehrtens are reprinted in this book, together with additional chapters giving their current views. To this are added new contributions from nine further experts in the history of mathematics who each discuss an important episode and consider whether it was arevolution.This book is an excellent reference work and an ideal course text for both graduate and undergraduate courses in the history and philosophy of science and mathematics.




Revolutions of Geometry


Book Description

Guides readers through the development of geometry and basic proof writing using a historical approach to the topic In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfully equipped with the necessary logic to develop a full understanding of geometric theorems. Following a presentation of the geometry of ancient Egypt, Babylon, and China, the author addresses mathematical philosophy and logic within the context of works by Thales, Plato, and Aristotle. Next, the mathematics of the classical Greeks is discussed, incorporating the teachings of Pythagoras and his followers along with an overview of lower-level geometry using Euclid's Elements. Subsequent chapters explore the work of Archimedes, Viete's revolutionary contributions to algebra, Descartes' merging of algebra and geometry to solve the Pappus problem, and Desargues' development of projective geometry. The author also supplies an excursion into non-Euclidean geometry, including the three hypotheses of Saccheri and Lambert and the near simultaneous discoveries of Lobachevski and Bolyai. Finally, modern geometry is addressed within the study of manifolds and elliptic geometry inspired by Riemann's work, Poncelet's return to projective geometry, and Klein's use of group theory to characterize different geometries. The book promotes the belief that in order to learn how to write proofs, one needs to read finished proofs, studying both their logic and grammar. Each chapter features a concise introduction to the presented topic, and chapter sections conclude with exercises that are designed to reinforce the material and provide readers with ample practice in writing proofs. In addition, the overall presentation of topics in the book is in chronological order, helping readers appreciate the relevance of geometry within the historical development of mathematics. Well organized and clearly written, Revolutions of Geometry is a valuable book for courses on modern geometry and the history of mathematics at the upper-undergraduate level. It is also a valuable reference for educators in the field of mathematics.




The Mathematics of Life


Book Description

Biologists have long dismissed mathematics as being unable to meaningfully contribute to our understanding of living beings. Within the past ten years, however, mathematicians have proven that they hold the key to unlocking the mysteries of our world -- and ourselves. In The Mathematics of Life, Ian Stewart provides a fascinating overview of the vital but little-recognized role mathematics has played in pulling back the curtain on the hidden complexities of the natural world -- and how its contribution will be even more vital in the years ahead. In his characteristically clear and entertaining fashion, Stewart explains how mathematicians and biologists have come to work together on some of the most difficult scientific problems that the human race has ever tackled, including the nature and origin of life itself.




Conceptual Revolutions


Book Description




The History of Mathematics: A Source-Based Approach: Volume 1


Book Description

The History of Mathematics: A Source-Based Approach is a comprehensive history of the development of mathematics. This, the first volume of the two-volume set, takes readers from the beginning of counting in prehistory to 1600 and the threshold of the discovery of calculus. It is notable for the extensive engagement with original—primary and secondary—source material. The coverage is worldwide, and embraces developments, including education, in Egypt, Mesopotamia, Greece, China, India, the Islamic world and Europe. The emphasis on astronomy and its historical relationship to mathematics is new, and the presentation of every topic is informed by the most recent scholarship in the field. The two-volume set was designed as a textbook for the authors' acclaimed year-long course at the Open University. It is, in addition to being an innovative and insightful textbook, an invaluable resource for students and scholars of the history of mathematics. The authors, each among the most distinguished mathematical historians in the world, have produced over fifty books and earned scholarly and expository prizes from the major mathematical societies of the English-speaking world.




Mathematical Reviews


Book Description




International Handbook of Mathematics Education


Book Description

ALAN J. BISHOP Monash University, Clayton, Victoria, Australia RATIONALE Mathematics Education is becoming a well-documented field with many books, journals and international conferences focusing on a variety of aspects relating to theory, research and practice. That documentation also reflects the fact that the field has expanded enormously in the last twenty years. At the 8th International Congress on Mathematics Education (ICME) in Seville, Spain, for example, there were 26 specialist Working Groups and 26 special ist Topic Groups, as well as a host of other group activities. In 1950 the 'Commission Internationale pour I 'Etude et l' Amelioration de l'Enseignement des Mathematiques' (CIEAEM) was formed and twenty years ago another active group, the 'International Group for the Psychology of Mathematics Education' (PME), began at the third ICME at Karlsruhe in 1976. Since then several other specialist groups have been formed, and are also active through regular conferences and publications, as documented in Edward Jacobsen's Chapter 34 in this volume.




From Natural Philosophy to the Sciences


Book Description

During the 19th century, much of the modern scientific enterprise took shape: scientific disciplines were formed, institutions and communities were founded and unprecedented applications to and interactions with other aspects of society and culture occurred. taught us about this exciting time and identify issues that remain unexamined or require reconsideration. They treat scientific disciplines - biology, physics, chemistry, the earth sciences, mathematics and the social sciences - in their specific intellectual and sociocultural contexts as well as the broader topics of science and medicine; science and religion; scientific institutions and communities; and science, technology and industry. From Natural Philosophy to the Sciences should be valuable for historians of science, but also of great interest to scholars of all aspects of 19th-century life and culture.




Numbers and Numeracy in the Greek Polis


Book Description

This is a wide-ranging study of numbers as a social and cultural phenomenon in ancient Greece, revealing both the instrumentality of numbers to polis life and the complex cultural meanings inherent in their use.