RFID and Wireless Sensors Using Ultra-Wideband Technology


Book Description

RFID and Wireless Sensors using Ultra-Wideband Technology explores how RFID-based technologies are becoming the first choice to realize the last (wireless) link in the chain between each element and the Internet due to their low cost and simplicity. Each day, more and more elements are being connected to the Internet of Things. In this book, ultra-wideband radio technology (in time domain) is exploited to realize this wireless link. Chipless, semi-passive and active RFID systems and wireless sensors and prototypes are proposed in terms of reader (setup and signal processing techniques) and tags (design, integration of sensors and performance). The authors include comprehensive theories, proposals of advanced techniques, and their implementation to help readers develop time-domain ultra-wideband radio technology for a variety of applications. This book is suitable for post-doctoral candidates, experienced researchers, and engineers developing RFID, tag antenna designs, chipless RFID, and sensor integration. - Includes comprehensive theories, advanced techniques, and guidelines for their implementation to help readers develop time-domain ultra-wideband radio technology for a variety of applications - Discusses ultra-wideband (UWB) technology in time-domain that is used to develop RFID systems and wireless sensors - Explores the development of hipless, semi-passive, and active identification platforms in terms of low-cost readers and tags - Integrates wireless sensors in the proposed chipless and semi-passive platforms




Chipless RFID Reader Design for Ultra-Wideband Technology


Book Description

Chipless RFID Reader Design for Ultra-Wideband Technology: Design, Realization and Characterization deals with the efficient design of Field Programmable Gate Array (FPGA) based embedded systems for chipless readers, providing a reading technique based on polarization diversity that is shown with the aim of reading cross-polarized, chipless tags independently from their orientation. This approach is valuable because it does not give any constraint at the tag design level. This book presents the state-of-the-art of chipless RFID systems, also providing useful comparisons. The international regulations that limit the UWB emission are taken into consideration, along with design guidance. Two designed, realized, and characterized reader prototypes are proposed. Sampling noise reduction, reading time, and cost effectiveness are also introduced and taken into consideration. - Presents the design, realization and characterization of chipless RFID readers - Provides concepts that are designed around a FPGA and its internal architecture, along with the phase of optimization - Covers the design of a novel pulse generator




Planar Microwave Sensors


Book Description

Comprehensive resource detailing the latest advances in microwave and wireless sensors implemented in planar technology Planar Microwave Sensors is an authoritative resource on the subject, discussing the main relevant sensing strategies, working principles, and applications on the basis of the authors’ own experience and background, while also highlighting the most relevant contributions to the topic reported by international research groups. The authors provide an overview of planar microwave sensors grouped by chapters according to their working principle. In each chapter, the working principle is explained in detail and the specific sensor design strategies are discussed, including validation examples at both simulation and experimental level. The most suited applications in each case are also reported. The necessary theory and analysis for sensor design are further provided, with special emphasis on performance improvement (i.e., sensitivity and resolution optimization, dynamic range, etc.). Lastly, the work covers a number of applications, from material characterization to biosensing, including motion control sensors, microfluidic sensors, industrial sensors, and more. Sample topics covered in the work include: Non-resonant and resonant sensors, reflective-mode and transmission-mode sensors, single-ended and differential sensors, and contact and contactless sensors Design guidelines for sensor performance optimization and analytical methods to retrieve the variables of interest from the measured sensor responses Radiofrequency identification (RFID) sensor types, prospective applications, and materials/technologies towards “green sensors” implementation Comparisons between different technologies for sensing and the advantages and limitations of microwave sensors, particularly planar sensors Engineers and qualified professionals involved in sensor technologies, along with undergraduate and graduate students in related programs of study, can harness the valuable information inside Planar Microwave Sensors to gain complete foundational knowledge on the subject and stay up to date on the latest research and developments in the field.




Chipless RFID based on RF Encoding Particle


Book Description

Chipless RFID based on RF Encoding Particle: Realization, Coding and Reading System explores the field of chipless identification based on the RF Encoding Particle (REP). The book covers the possibility of collecting information remotely with RF waves (RFID) with totally passive tags without wire, batteries, and chips, and even printed on paper. Despite the many benefits of RFID, deployment is still hindered by several economic and technological factors. Among these barriers are the high cost of tags, lack of reliability and security in the information contained in the RFID chip, and how tags are 'recycled.' This book focuses on the development of chipless RFID tags, representing a new family of low cost tags. With this technology information is extracted from the electromagnetic response of the tag, which depends only on its geometry. Various solutions have been developed by the authors to increase the amount of information, reduce the surface of the tag, or improve the robustness of detection. Considerations such as realization using paper substrate, the development of a low cost detection system, and measurements in a real environment have been addressed for practical implementation. - Introduces the chipless RFID REP approach as compared to classical chipless RFID, RFID, and barcode technologies - Includes a demonstration of the practical and economic potential of chipless RFID technology, with detailed presentations and discussions of different test benches and comparisons - Presents in detail numerous examples of chipless tags that are able to tackle specific problems: sensitivity of detection, encoding density, robustness of detection, problem of tag orientation, tags and reader cost, and compliance with emission standards - Focuses on the development of chipless RFID tags, representing a new family of low cost tags







Implementing Industry 4.0


Book Description

This book relates research being implemented in three main research areas: secure connectivity and intelligent systems, real-time analytics and manufacturing knowledge and virtual manufacturing. Manufacturing SMEs and MNCs want to see how Industry 4.0 is implemented. On the other hand, groundbreaking research on this topic is constantly growing. For the aforesaid reason, the Singapore Agency for Science, Technology and Research (A*STAR), has created the model factory initiative. In the model factory, manufacturers, technology providers and the broader industry can (i) learn how I4.0 technologies are implemented on real-world manufacturing use-cases, (ii) test process improvements enabled by such technologies at the model factory facility, without disrupting their own operations, (iii) co-develop technology solutions and (iv) support the adoption of solutions at their everyday industrial operation. The book constitutes a clear base ground not only for inspiration of researchers, but also for companies who will want to adopt smart manufacturing approaches coming from Industry 4.0 in their pathway to digitization.




Chipless RFID Printing Technologies


Book Description

Chipless RFID Printing Technologies provides a comprehensive overview of advanced Chipless RFID communication, sensors, reader antennas, radar cross section and necessity of RFID printing technologies. The book describes sensing materials needed for Radio Frequency Identification (RFID) printing, focusing on the design of the passive printable resonators, and the signal processing approach used to eliminate the inaccuracy in detection at the receiver. It walks readers through the additive production approaches and suitable substrates for low-cost mass manufacturing of digital gadgets, consisting of RFID tags such as, wireless sensors, conductive tags and readers, touchpads for keyboards, nand show programs. Packed with numerous sensing strategies utilized in chipless RFID systems, the book introduces recent developments in the printing techniques of chipless RFID and their performances in conjunction with many one of a kind advanced features that are critical for low price chipless RFID device implementations. Broad coverage is given to printable tags for Biomedical and wearable applications, advanced RFID printing technologies, and full technical details about chipless RFID technology not found in other contemporary texts. The book presents a unique view of the challenges and future direction of research essential for researchers and research facilities to explore further research in chipless RFID. Readers will understand the core principles and classical applications of RFID technologies, making it an invaluable reference for engineers working on RF and microwave engineering. This is also a great resource for researchers currently working in the area, as well as graduate students looking to gain knowledge on Radio Frequency Identification.




Introduction to Ultra Wideband for Wireless Communications


Book Description

asakta-buddhih sarvatra . jitatma vigata-sprhah . . . . naiskarmya-siddhim paramam . sannyasenadhigacchati Detached by spiritual intelligence from everything controlling the mind, without material desires, one attains the paramount perfection in cessation of re- tions by renunciation. The Bhagvad Gita (18.49) Compared to traditional carrier-based, Ultra-Wide Band (UWB), or carrier-less, systems implement new paradigms in terms of signal generation and reception. Thus, designing an UWB communication system requires the understanding of how excess bandwidth and very low transmitted powers can be used jointly to provide a reliable radio link. UWB offers systems transceiver potential for very simple implementations. Comparison between UWB and traditional narrow-band systems highlights the following features: Large bandwidth enables very fine time-space resolution for accurate lo- tion of the UWB nodes and for distributing network time stamps. Very short pulses are effectively counter-fighting the channel effect in very dense multipath environments. Data rate (number of pulses transmitted per bit) can be traded with power emission control and distance coverage. Very low power density leads to low probability of signal detection and adds security for all the layers of the communication stack. Very low power density is obtained through radio regulation emission masks; UWB systems are suitable for coexistence with already deployed narrow-band systems.




RCS Synthesis for Chipless RFID


Book Description

The considerable growth of RFID is currently accompanied by the development of numerous identification technologies that complement those already available while seeking to answer new problems. Chipless RFID is one example.The goal is to both significantly reduce the price of the tag and increase the amount of information it contains, in order to compete with the barcode while retaining the benefits of a flexible reading approach based on radio communication.To solve the problem of the number of bits, this book describes the possibility of coding the information at the level of the overall shape of the RCS of the tag, which would facilitate reaching very large quantities. The design of the tags then returns to the resolution of the inverse problem of the electromagnetic signature. The proposed design methodology regularizes the problem by decomposing the signature on a basis of elementary patterns whose signature is chosen in advance. - Includes a theoretical presentation of scattering phenomenon in electromagnetism, regrouping elements from classical RFID, pulse radar, and antenna theory - Features a new coding technique based on magnitude level that is presented and characterized for different kinds of tags - Proposes, for the first time, RCS synthesis based on a physical approach for wide-frequency bands




Low Power Emerging Wireless Technologies


Book Description

Advanced concepts for wireless communications offer a vision of technology that is embedded in our surroundings and practically invisible, but present whenever required. Although the use of deep submicron CMOS processes allows for an unprecedented degree of scaling in digital circuitry, it complicates the implementation and integration of traditional RF circuits. The requirement for long operating life under limited energy supply also poses severe design constraints, particularly in critical applications in commerce, healthcare, and security. These challenges call for innovative design solutions at the circuit and system levels. Low Power Emerging Wireless Technologies addresses the crucial scientific and technological challenges for the realization of fully integrated, highly efficient, and cost-effective solutions for emerging wireless applications. Get Insights from the Experts on Wireless Circuit Design The book features contributions by top international experts in wireless circuit design representing both industry and academia. They explore the state of the art in wireless communication for 3G and 4G cellular networks, millimeter-wave applications, wireless sensor networks, and wireless medical technologies. The emphasis is on low-power wireless applications, RF building blocks for wireless applications, and short-distance and beam steering. Topics covered include new opportunities in body area networks, medical implants, satellite communications, automobile radar detection, and wearable electronics. Exploit the Potential behind Emerging Green Wireless Technologies A must for anyone serious about future wireless technologies, this multidisciplinary book discusses the challenges of emerging power-efficient applications. Written for practicing engineers in the wireless communication field who have some experience in integrated circuits, it is also a valuable resource for graduate students.