Riemannian Foliations


Book Description

Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a par tition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of di L..... -' _ mension q. -----~) W M Actually, this image corresponds to an elementary type of folia tion, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simpIe" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometimes even an infinite number of plaques.




Foliations on Riemannian Manifolds


Book Description

A first approximation to the idea of a foliation is a dynamical system, and the resulting decomposition of a domain by its trajectories. This is an idea that dates back to the beginning of the theory of differential equations, i.e. the seventeenth century. Towards the end of the nineteenth century, Poincare developed methods for the study of global, qualitative properties of solutions of dynamical systems in situations where explicit solution methods had failed: He discovered that the study of the geometry of the space of trajectories of a dynamical system reveals complex phenomena. He emphasized the qualitative nature of these phenomena, thereby giving strong impetus to topological methods. A second approximation is the idea of a foliation as a decomposition of a manifold into submanifolds, all being of the same dimension. Here the presence of singular submanifolds, corresponding to the singularities in the case of a dynamical system, is excluded. This is the case we treat in this text, but it is by no means a comprehensive analysis. On the contrary, many situations in mathematical physics most definitely require singular foliations for a proper modeling. The global study of foliations in the spirit of Poincare was begun only in the 1940's, by Ehresmann and Reeb.




Foliations on Riemannian Manifolds and Submanifolds


Book Description

This monograph is based on the author's results on the Riemannian ge ometry of foliations with nonnegative mixed curvature and on the geometry of sub manifolds with generators (rulings) in a Riemannian space of nonnegative curvature. The main idea is that such foliated (sub) manifolds can be decom posed when the dimension of the leaves (generators) is large. The methods of investigation are mostly synthetic. The work is divided into two parts, consisting of seven chapters and three appendices. Appendix A was written jointly with V. Toponogov. Part 1 is devoted to the Riemannian geometry of foliations. In the first few sections of Chapter I we give a survey of the basic results on foliated smooth manifolds (Sections 1.1-1.3), and finish in Section 1.4 with a discussion of the key problem of this work: the role of Riemannian curvature in the study of foliations on manifolds and submanifolds.




Metric Foliations and Curvature


Book Description

Riemannian manifolds, particularly those with positive or nonnegative curvature, are constructed from only a handful by means of metric fibrations or deformations thereof. This text documents some of these constructions, many of which have only appeared in journal form. The emphasis is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space.




Geometry of Foliations


Book Description

Surveys research over the past few years at a level accessible to graduate students and researchers with a background in differential and Riemannian geometry. Among the topics are foliations of codimension one, holonomy, Lie foliations, basic forms, mean curvature, the Hodge theory for the transversal Laplacian, applications of the heat equation method to Riemannian foliations, the spectral theory, Connes' perspective of foliations as examples of non- commutative spaces, and infinite-dimensional examples. The bibliographic appendices list books and surveys on particular aspects of foliations, proceedings of conferences and symposia, all papers on the subject up to 1995, and the numbers of papers published on the subject during the years 1990-95. Annotation copyrighted by Book News, Inc., Portland, OR




Extrinsic Geometry of Foliations


Book Description

This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.




Foliations and Geometric Structures


Book Description

Offers basic material on distributions and foliations. This book introduces and builds the tools needed for studying the geometry of foliated manifolds. Its main theme is to investigate the interrelations between foliations of a manifold on the one hand, and the many geometric structures that the manifold may admit on the other hand.




Geometry of Foliations


Book Description

The topics in this survey volume concern research done on the differential geom etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de voted to Hodge theory for the transversal Laplacian and applications of the heat equation method to Riemannian foliations. Chapter 9 on Lie foliations is a prepa ration for the statement of Molino's Structure Theorem for Riemannian foliations in Chapter 10. Some aspects of the spectral theory for Riemannian foliations are discussed in Chapter 11. Connes' point of view of foliations as examples of non commutative spaces is briefly described in Chapter 12. Chapter 13 applies ideas of Riemannian foliation theory to an infinite-dimensional context. Aside from the list of references on Riemannian foliations (items on this list are referred to in the text by [ ]), we have included several appendices as follows. Appendix A is a list of books and surveys on particular aspects of foliations. Appendix B is a list of proceedings of conferences and symposia devoted partially or entirely to foliations. Appendix C is a bibliography on foliations, which attempts to be a reasonably complete list of papers and preprints on the subject of foliations up to 1995, and contains approximately 2500 titles.




Dynamics of Foliations, Groups and Pseudogroups


Book Description

This book deals with the dynamics of general systems such as foliations, groups and pseudogroups, systems which are closely related via the notion of holonomy. It concentrates on notions and results related to different ways of measuring complexity of systems under consideration. More precisely, it deals with different types of growth, entropies and dimensions of limiting objects. Problems related to the topics covered are provided throughout the book.




Foliations and the Geometry of 3-Manifolds


Book Description

This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.