Risk Analysis in Building Fire Safety Engineering


Book Description

This book bridges the gap between risk assessment and fire safety engineering like few other resources. As all required knowledge for Probability and Statistics for Fire Engineering is included in the preliminary chapters, the book is suitable for teaching Fire Engineering components in a wide range of engineering courses for senior graduates and for postgraduate students of Fire Engineering. It will also serve as a comprehensive reference for professionals. This book describes the theory and the models involved in risk analysis, and includes case studies of multiple fire scenarios. Building fire safety and human behavioural responses to these scenarios show the benefits of risk-based fire safety design.




Principles of Fire Risk Assessment in Buildings


Book Description

This book arrives at just the right time to facilitate understanding of performance-based fire risk assessment in buildings – an integral part of the global shift in policy away from traditional prescriptive codes. Yung, an internationally recognised expert on the subject of fire risk assessment, introduces the basic principles and techniques that help the reader to understand the various methodologies that are currently in place or being proposed by different organisations. Through his illustration of basic principles and techniques he enables the reader to conduct their own fire risk assessments. He demonstrates how the probabilities of fire scenarios are assessed based on the probabilities of success and failure of fire protection measures that are in place. He also shows how the consequences of fire scenarios are assessed based on the intensity and speed of fire and smoke spread, the probability and speed of occupant response and evacuation, and the effectiveness and speed of fire department response and rescue efforts. Yung’s clear and practical approach to this highly topical subject enables the reader to integrate the various tools available into a quantitative framework that can be used for decision making. He brings an invaluable resource to all those involved in fire engineering and risk assessment, including students, academics, building designers, fire protection engineers, structural engineers, regulators and risk analysts.




SFPE Handbook of Fire Protection Engineering


Book Description

Revised and significantly expanded, the fifth edition of this classic work offers both new and substantially updated information. As the definitive reference on fire protection engineering, this book provides thorough treatment of the current best practices in fire protection engineering and performance-based fire safety. Over 130 eminent fire engineers and researchers contributed chapters to the book, representing universities and professional organizations around the world. It remains the indispensible source for reliable coverage of fire safety engineering fundamentals, fire dynamics, hazard calculations, fire risk analysis, modeling and more. With seventeen new chapters and over 1,800 figures, the this new edition contains: Step-by-step equations that explain engineering calculations Comprehensive revision of the coverage of human behavior in fire, including several new chapters on egress system design, occupant evacuation scenarios, combustion toxicity and data for human behavior analysis Revised fundamental chapters for a stronger sense of context Added chapters on fire protection system selection and design, including selection of fire safety systems, system activation and controls and CO2 extinguishing systems Recent advances in fire resistance design Addition of new chapters on industrial fire protection, including vapor clouds, effects of thermal radiation on people, BLEVEs, dust explosions and gas and vapor explosions New chapters on fire load density, curtain walls, wildland fires and vehicle tunnels Essential reference appendices on conversion factors, thermophysical property data, fuel properties and combustion data, configuration factors and piping properties “Three-volume set; not available separately”




Evaluation of Fire Safety


Book Description

Fire safety is a major concern in many industries, particularly as there have been significant increases in recent years in the quantities of hazardous materials in process, storage or transport. Plants are becoming larger and are often situated in or close to densely populated areas, and the hazards are continually highlighted with incidents such as the fires and explosions at the Piper Alpha oil and gas platform, and the Enschede firework factory. As a result, greater attention than ever before is now being given to the evaluation and control of these hazards. In a comprehensive treatment of the subject unavailable elsewhere, this book describes in detail the applications of hazard and risk analysis to fire safety, going on to develop and apply quantification methods. It also gives an explanation in quantitative terms of improvements in fire safety in association with the costs that are expended in their achievement. Furthermore, a quantitative approach is applied to major fire and explosion disasters to demonstrate crucial faults and events. Featuring: Full international coverage and a review of several major fires and explosion disasters. Presentation of the properties and science of fire including the latest research. Detailed coverage of the performance of fire safety measures. This is an essential book for practitioners in fire safety engineering, loss prevention professionals, technical personnel in insurance companies as well as academics involved in fire science and postgraduate students. This book is also a useful reference for fire safety officers, building designers, engineers in the process industries, safety practitioners and risk assessment consultants.




System Safety Engineering and Risk Assessment


Book Description

We all know that safety should be an integral part of the systems that we build and operate. The public demands that they are protected from accidents, yet industry and government do not always know how to reach this common goal. This book gives engineers and managers working in companies and governments around the world a pragmatic and reasonable approach to system safety and risk assessment techniques. It explains in easy-to-understand language how to design workable safety management systems and implement tested solutions immediately. The book is intended for working engineers who know that they need to build safe systems, but aren’t sure where to start. To make it easy to get started quickly, it includes numerous real-life engineering examples. The book’s many practical tips and best practices explain not only how to prevent accidents, but also how to build safety into systems at a sensible price. The book also includes numerous case studies from real disasters that describe what went wrong and the lessons learned. See What’s New in the Second Edition: New chapter on developing government safety oversight programs and regulations, including designing and setting up a new safety regulatory body, developing safety regulatory oversight functions and governance, developing safety regulations, and how to avoid common mistakes in government oversight Significantly expanded chapter on safety management systems, with many practical applications from around the world and information about designing and building robust safety management systems, auditing them, gaining internal support, and creating a safety culture New and expanded case studies and "Notes from Nick’s Files" (examples of practical applications from the author’s extensive experience) Increased international focus on world-leading practices from multiple industries with practical examples, common mistakes to avoid, and new thinking about how to build sustainable safety management systems New material on safety culture, developing leading safety performance indicators, safety maturity model, auditing safety management systems, and setting up a safety knowledge management system




Quantitative Risk Assessment in Fire Safety


Book Description

Fire safety regulations in many countries require Fire Risk Assessment to be carried out for buildings such as workplaces and houses in multiple occupation. This duty is imposed on a "Responsible Person" and also on any other persons having control of buildings in compliance with the requirements specified in the regulations. Although regulations only require a qualitative assessment of fire risk, a quantitative assessment is an essential first step for performing cost-benefit analysis of alternative fire strategies to comply with the regulations and selecting the most cost-effective strategy. To facilitate this assessment, various qualitative, semi-quantitative and quantitative techniques of fire risk assessment, already developed, are critically reviewed in this book and some improvements are suggested. This book is intended to be an expanded version of Part 7: Probabilistic risk assessment, 2003, a Published Document (PD) to British Standard BS 7974: 2001 on the Application of Fire Safety Engineering Principles to the Design of Buildings. Ganapathy Ramachandran and David Charters were co-authors of PD 7974 Part 7. Quantitative Risk Assessment in Fire Safety is essential reading for consultants, academics, fire safety engineers, fire officers, building control officers and students in fire safety engineering. It also provides useful tools for fire protection economists and risk management professionals, including those involved in fire insurance underwriting.




Fire Protection Engineering in Building Design


Book Description

Introducing the implementation and integration of fire protection engineering, this concise reference encompasses not only the basic information on the functions, design and implementation of systems, but also reveals how this area can be integrated withother engineering disciplines.




Nutritional Care of the Patient with Gastrointestinal Disease


Book Description

This evidence-based book serves as a clinical manual as well as a reference guide for the diagnosis and management of common nutritional issues in relation to gastrointestinal disease. Chapters cover nutrition assessment; macro- and micronutrient absorption; malabsorption; food allergies; prebiotics and dietary fiber; probiotics and intestinal microflora; nutrition and GI cancer; nutritional management of reflux; nutrition in IBS and IBD; nutrition in acute and chronic pancreatitis; enteral nutrition; parenteral nutrition; medical and endoscopic therapy of obesity; surgical therapy of obesity; pharmacologic nutrition, and nutritional counseling.




Fire Safe Use of Wood in Buildings


Book Description

This book provides guidance on the design of timber buildings for fire safety, developed within the global network Fire Safe Use of Wood (FSUW) and with reference to Eurocode 5 and other international codes. It introduces the behaviour of fires in timber buildings and describes strategies for providing safety if unwanted fires occur. It provides guidance on building design to prevent any fires from spreading while maintaining the load-bearing capacity of structural timber elements, connections and compartmentation. Also included is information on the reaction-to-fire of wood products according to different classification systems, as well as active measures of fire protection, and quality of workmanship and inspection as means of fulfilling fire safety objectives. Presents global guidance on fire safety in timber buildings Provides a wide perspective, covering the whole field of fire safety design Uses the latest scientific knowledge, based on recent analytical and experimental research results Gives practical examples illustrating the importance of good detailing in building design Fire Safe Use of Wood in Buildings is ideal for all involved in the fire safety of buildings, including architects, engineers, firefighters, educators, regulatory authorities, insurance companies and professionals in the building industry.




Post-Earthquake Fire Analysis in Urban Structures


Book Description

Post-earthquake fire is one of the most complicated problems resulting from earthquakes and presents a serious risk to urban structures. Most standards and codes ignore the possibility of post-earthquake fire; thus it is not factored in when determining the ability of buildings to withstand load. This book describes the effects of post-earthquake fire on partially damaged buildings located in seismic urban regions. The book quantifies the level of associated post-earthquake fire effects, and discusses methods for mitigating the risk at both the macro scale and micro scale. The macro scale strategies address urban regions while the micro scale strategies address building structures, covering both existing buildings and those that are yet to be designed.