Health Risks from Exposure to Low Levels of Ionizing Radiation


Book Description

This book is the seventh in a series of titles from the National Research Council that addresses the effects of exposure to low dose LET (Linear Energy Transfer) ionizing radiation and human health. Updating information previously presented in the 1990 publication, Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V, this book draws upon new data in both epidemiologic and experimental research. Ionizing radiation arises from both natural and man-made sources and at very high doses can produce damaging effects in human tissue that can be evident within days after exposure. However, it is the low-dose exposures that are the focus of this book. So-called “late” effects, such as cancer, are produced many years after the initial exposure. This book is among the first of its kind to include detailed risk estimates for cancer incidence in addition to cancer mortality. BEIR VII offers a full review of the available biological, biophysical, and epidemiological literature since the last BEIR report on the subject and develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation.




Health Effects of Exposure to Low Levels of Ionizing Radiation


Book Description

This book reevaluates the health risks of ionizing radiation in light of data that have become available since the 1980 report on this subject was published. The data include new, much more reliable dose estimates for the A-bomb survivors, the results of an additional 14 years of follow-up of the survivors for cancer mortality, recent results of follow-up studies of persons irradiated for medical purposes, and results of relevant experiments with laboratory animals and cultured cells. It analyzes the data in terms of risk estimates for specific organs in relation to dose and time after exposure, and compares radiation effects between Japanese and Western populations.




Analysis of Cancer Risks in Populations Near Nuclear Facilities


Book Description

In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.







Radiation Risk Estimation


Book Description

This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies. Contents: Part I - Estimation in regression models with errors in covariates Measurement error models Linear models with classical error Polynomial regression with known variance of classical error Nonlinear and generalized linear models Part II Radiation risk estimation under uncertainty in exposure doses Overview of risk models realized in program package EPICURE Estimation of radiation risk under classical or Berkson multiplicative error in exposure doses Radiation risk estimation for persons exposed by radioiodine as a result of the Chornobyl accident Elements of estimating equations theory Consistency of efficient methods Efficient SIMEX method as a combination of the SIMEX method and the corrected score method Application of regression calibration in the model with additive error in exposure doses




Radiation Protection Activities


Book Description




Limitation of Exposure to Ionizing Radiation


Book Description

NCRP Report No. 116 is the latest in the long series of reports on basic radiation protection criteria that began in 1934. It supersedes the predecessor in the series, NCRP Report No. 91, which was published in 1987. The current Report takes advantage of new information, evaluations and thinking that have developed since 1987, particularly the risk estimate formulations set out in NCRP Report No. 115. While the recommendations set out in this Report do not constitute a radical revision of the basic criteria, they do represent a refinement of the system enunciated in Report No. 91. Important changes include the utilization of revised tissue/organ weighting factors and the introduction of radiation weighting factors. Also noteworthy is the introduction of an allowable reference level of intake. Noteworthy too is the recommendation of an age-based lifetime limit for control of occupational exposures and a major simplification of limits aimed at controlling the exposure of the embryo and fetus. This Report, after outlining the goals and philosophy of radiation protection and the basis for exposure limits, goes on to review, in some detail, absorbed dose, equivalent dose, radiation weighting factors, and effective dose. Committed equivalent dose and committed effective dose are also introduced. Risk estimates for radiation exposure are presented and then the dose limits are enunciated. The Report also covers exposure in excess of the limits, limits for unusual occupational situations, guidance for emergency occupational exposure, and remedial action levels for naturally occurring radiation.




Radiation in Medicine


Book Description

Does radiation medicine need more regulation or simply better-coordinated regulation? This book addresses this and other questions of critical importance to public health and safety. The issues involved are high on the nation's agenda: the impact of radiation on public safety, the balance between federal and state authority, and the cost-benefit ratio of regulation. Although incidents of misadministration are rare, a case in Pennsylvania resulting in the death of a patient and the inadvertent exposure of others to a high dose of radiation drew attention to issues concerning the regulation of ionizing radiation in medicine and the need to examine current regulatory practices. Written at the request from the Nuclear Regulatory Commission (NRC), Radiation in Medicine reviews the regulation of ionizing radiation in medicine, focusing on the NRC's Medical Use Program, which governs the use of reactor-generated byproduct materials. The committee recommends immediate action on enforcement and provides longer term proposals for reform of the regulatory system. The volume covers: Sources of radiation and their use in medicine. Levels of risk to patients, workers, and the public. Current roles of the Nuclear Regulatory Commission, other federal agencies, and states. Criticisms from the regulated community. The committee explores alternative regulatory structures for radiation medicine and explains the rationale for the option it recommends in this volume. Based on extensive research, input from the regulated community, and the collaborative efforts of experts from a range of disciplines, Radiation in Medicine will be an important resource for federal and state policymakers and regulators, health professionals involved in radiation treatment, developers and producers of radiation equipment, insurance providers, and concerned laypersons.




Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials


Book Description

Naturally occurring radionuclides are found throughout the earth's crust, and they form part of the natural background of radiation to which all humans are exposed. Many human activities-such as mining and milling of ores, extraction of petroleum products, use of groundwater for domestic purposes, and living in houses-alter the natural background of radiation either by moving naturally occurring radionuclides from inaccessible locations to locations where humans are present or by concentrating the radionuclides in the exposure environment. Such alterations of the natural environment can increase, sometimes substantially, radiation exposures of the public. Exposures of the public to naturally occurring radioactive materials (NORM) that result from human activities that alter the natural environment can be subjected to regulatory control, at least to some degree. The regulation of public exposures to such technologically enhanced naturally occurring radioactive materials (TENORM) by the US Environmental Protection Agency (EPA) and other regulatory and advisory organizations is the subject of this study by the National Research Council's Committee on the Evaluation of EPA Guidelines for Exposures to Naturally Occurring Radioactive Materials.