RNA Recognition


Book Description

RNA Recognition, Volume 623, the latest volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This updated volume covers a variety of topics, including The Preparation of cooperative RNA recognition complexes for crystallographic structural studies, Methods for thermal denaturation studies of fluorogenic aptamers, Dynamic combinatorial chemistry as a rapid, fragment-based approach to RNA-targeted compound discovery, Using a click chemistry assay to identify natural product ligands for pre-microRNAs, Lessons from exploration of chemical and structural small molecule:RNA space, Using ligand-observed NMR to study RNA-small molecule interactions, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Enzymology series - Includes the latest information on RNA Recognition







Structures of Large RNA Molecules and Their Complexes


Book Description

This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in RNA folding and dynamics, RNA-protein interactions and large RNPs. - Continues the legacy of this premier serial with quality chapters on structures of large RNA molecules and their complexes




Nucleic Acid Structure and Recognition


Book Description

This book provides a detailed view of the molecular structures of DNA and RNA and how they are recognised by small molecules and proteins. Extensive source material is provided, including information on relevant web sites and computer programmes. The major methods of structural investigation for nucleic acids: X-ray crystallography, NMR, and molecular modelling are reviewed and their scope and limitations (in the context of nucleic acids) discussed. Also covered are the conformational features of nucleic acid building blocks, including a description of how base-pair morphologies are analysed; the structures of DNA double helices and helical oligonucleotides, emphasising current ideas on sequence-dependent structure; and DNA-DNA interactions, including triplexes and quadruplexes. The principles of RNA folding, ribosome, and ribozyme structure are also surveyed. Both covalent and non-covalent nucleic acid interactions with small molecules are described, with the emphasis on recognition principles and sequence specific gene recognition. The principles of protein - nucleic acid are covered, focussing on regulatory proteins. Nucleic Acid Structure and Recognition will therefore equip readers with a good understanding of all the important aspects of this major field. The Nucleic Acid Database (NDB) crystallographic and NMR structures for the nucleic acid structures described in the book are freely available through the Nucleic Acid Structure and Recognition website.




RNA-protein Interactions


Book Description

The study of RNA-protein interactions is crucial to understanding the mechanisms and control of gene expression and protein synthesis. The realization that RNAs are often far more biologically active than was previously appreciated has stimulated a great deal of new research in this field. Uniquely, in this book, the world's leading researchers have collaborated to produce a comprehensive and current review of RNA-protein interactions for all scientists working in this area. Timely, comprehensive, and authoritative, this new Frontiers title will be invaluable for all researchers in molecular biology, biochemistry and structural biology.




Toll-Like Receptors (TLRs) and Innate Immunity


Book Description

Overall recent research on TLRs has led to tremendous increase in our understanding of early steps in pathogen recognition and will presumably lead to potent TLR targeting therapeutics in the future. This book reviews and highlights our recent understanding on the function and ligands of TLRs as well as their role in autoimmunity, dendritic cell activation and target structures for therapeutic intervention.




Regulation of Gene Expression by Small RNAs


Book Description

New Findings Revolutionize Concepts of Gene FunctionEndogenous small RNAs have been found in various organisms, including humans, mice, flies, worms, fungi, and bacteria. Furthermore, it's been shown that microRNAs acting as cellular rheostats have the ability to modulate gene expression. In higher eukaryotes, microRNAs may regulate as much as 50 p




RNA Binding Proteins


Book Description

Gene expression in eukaryotes is regulated at different levels, which need to be coordinated to implement the information in the genome. Now it is clear that post-transcriptional regulation of gene expression such as pre-mRNA splicing, mRNA transport, editing, turnover and translation are as important as the control of transcription. In all aspects




The Many Faces of RNA


Book Description

The Many Faces of RNA is the subject for the eighth SmithKline Beecham Pharmaceuticals Research Symposia. It highlights a rapidly developing area of scientific investigation. The style and format are deliberately designed to promote in-depth presentations and discussions and to facilitate the forging of collaborations between academic and industrial partners.This symposium focuses on several of the many fundamental, advancing strategies for exploring RNA and its functions. It emphasizes the interplay between biology, chemistry, genomics, and molecular biology which is leading to exciting new insights and avenues of investigation. The book explores RNA as a therapeutic target, RNA as a tool, RNA and its interactions, along with chemical, computational, and structural investigations.




RNA Exosome


Book Description

The diversity of RNAs inside living cells is amazing. We have known of the more “classic” RNA species: mRNA, tRNA, rRNA, snRNA and snoRNA for some time now, but in a steady stream new types of molecules are being described as it is becoming clear that most of the genomic information of cells ends up in RNA. To deal with the enormous load of resulting RNA processing and degradation reactions, cells need adequate and efficient molecular machines. The RNA exosome is arising as a major facilitator to this effect. Structural and functional data gathered over the last decade have illustrated the biochemical importance of this multimeric complex and its many co-factors, revealing its enormous regulatory power. By gathering some of the most prominent researchers in the exosome field, it is the aim of this volume to introduce this fascinating protein complex as well as to give a timely and rich account of its many functions. The exosome was discovered more than a decade ago by Phil Mitchell and David Tollervey by its ability to trim the 3’end of yeast, S. cerevisiae, 5. 8S rRNA. In a historic account they laid out the events surrounding this identification and the subsequent birth of the research field. In the chapter by Kurt Januszyk and Christopher Lima the structural organization of eukaryotic exosomes and their evolutionary counterparts in bacteria and archaea are discussed in large part through presentation of structures.