RNA-Based Regulation in Human Health and Disease


Book Description

RNA-based Regulation in Human Health and Disease offers an in-depth exploration of RNA mediated genome regulation at different hierarchies. Beginning with multitude of canonical and non-canonical RNA populations, especially noncoding RNA in human physiology and evolution, further sections examine the various classes of RNAs (from small to large noncoding and extracellular RNAs), functional categories of RNA regulation (RNA-binding proteins, alternative splicing, RNA editing, antisense transcripts and RNA G-quadruplexes), dynamic aspects of RNA regulation modulating physiological homeostasis (aging), role of RNA beyond humans, tools and technologies for RNA research (wet lab and computational) and future prospects for RNA-based diagnostics and therapeutics. One of the core strengths of the book includes spectrum of disease-specific chapters from experts in the field highlighting RNA-based regulation in metabolic & neurodegenerative disorders, cancer, inflammatory disease, viral and bacterial infections. We hope the book helps researchers, students and clinicians appreciate the role of RNA-based regulation in genome regulation, aiding the development of useful biomarkers for prognosis, diagnosis, and novel RNA-based therapeutics. - Comprehensive information of non-canonical RNA-based genome regulation modulating human health and disease - Defines RNA classes with special emphasis on unexplored world of noncoding RNA at different hierarchies - Disease specific role of RNA - causal, prognostic, diagnostic and therapeutic - Features contributions from leading experts in the field




RNA Regulation, 2 Volumes


Book Description

Based on one of the leading encyclopedic resources in cell and molecular biology worldwide, this two-volume work contains more than 75% new content, not previously published in the Encyclopedia. All the other chapters have been carefully updated. The result is a comprehensive overview of the different functions of the various forms of RNA in living organisms, with each contributor carefully selected and an internationally recognized expert on his or her field. Special focus is on the different forms of expression regulation through RNA, with medical applications in the treatment of diseases -- from cancers and immune responses to infections and aging -- covered in detail. At least 45 of the 55 articles are new content previously not published in the Encyclopedia.







RNA Helicases


Book Description

This volume of Methods in Enzymology aims to provide a reference for the diverse, powerful tools used to analyze RNA helicases. The contributions in this volume cover the broad scope of methods in the research on these enzymes. Several chapters describe quantitative biophysical and biochemical approaches to study molecular mechanisms and conformational changes of RNA helicases. Further chapters cover structural analysis, examination of co-factor effects on several representative examples, and the analysis of cellular functions of select enzymes. Two chapters outline approaches to the analysis of inhibitors that target RNA helicases. - This volume of Methods in Enzymology aims to provide a reference for the diverse, powerful tools used to analyze RNA helicases - The contributions in this volume cover the broad scope of methods in the research on these enzymes




Regulation of Alternative Splicing


Book Description

The discovery in 1977 that genes are split into exons and introns has done away with the one gene - one protein dogma. Indeed, the removal of introns from the primary RNA transcript is not necessarily straightforward since there may be optional pathways leading to different messenger RNAs and consequently to different proteins. Examples of such an alternative splicing mechanism cover all fields of biology. Moreover, there are plenty of occurrences where deviant splicing can have pathological effects. Despite the high number of specific cases of alternative splicing, it was not until recently that the generality and extent of this phenomenon was fully appreciated. A superficial reading of the preliminary sequence of the human genome published in 2001 led to the surprising, and even deceiving to many scientists, low number of genes (around 32,000) which contrasted with the much higher figure around 150,000 which was previously envisioned. Attempts to make a global assessment of the use of alternative splicing are recent and rely essentially on the comparison of genomic mRNA and EST sequences as reviewed by Thanaraj and Stamm in the first chapter of this volume. Most recent estimates suggest that 40-60% of human genes might be alternatively spliced, as opposed to about 22% for C. elegans.




Regulation of Gene Expression by Small RNAs


Book Description

New Findings Revolutionize Concepts of Gene FunctionEndogenous small RNAs have been found in various organisms, including humans, mice, flies, worms, fungi, and bacteria. Furthermore, it's been shown that microRNAs acting as cellular rheostats have the ability to modulate gene expression. In higher eukaryotes, microRNAs may regulate as much as 50 p




Handbook of RNA Biochemistry


Book Description

The second edition of a highly acclaimed handbook and ready reference. Unmatched in its breadth and quality, around 100 specialists from all over the world share their up-to-date expertise and experiences, including hundreds of protocols, complete with explanations, and hitherto unpublished troubleshooting hints. They cover all modern techniques for the handling, analysis and modification of RNAs and their complexes with proteins. Throughout, they bear the practising bench scientist in mind, providing quick and reliable access to a plethora of solutions for practical questions of RNA research, ranging from simple to highly complex. This broad scope allows the treatment of specialized methods side by side with basic biochemical techniques, making the book a real treasure trove for every researcher experimenting with RNA.




Adenovirus Methods and Protocols


Book Description

Adenovirus Methods and Protocols, Second Edition, now in two volumes, is an essential resource for adenovirus (Ad) researchers beginning in the field, and an inspirational starting point for researchers looking to branch into new areas of Ad study. In addition to updating and expanding important chapters from the first edition, the authors have added new chapters that address innovative, exciting areas of emphasis in Ad research, including Ad vector construction and use, real-time PCR, use of new animal models, and methods for quantification of Ad virus or virus expression/interactions. The protocols presented are written by trendsetting researchers.




Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria


Book Description

Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.




RNA Polymerases as Molecular Motors


Book Description

To thrive, every living cell must continuously gauge and respond to changes in its environment. These changes are ultimately implemented by modulating gene expression, a process that relies on transcription by Nature’s most multivalent molecular machine, the RNA polymerase. This book covers progress made over the past decade understanding how this machine functions to compute the cellular state, from the atomistic structural level responsible for chemistry to the integrative level at which RNA polymerase interacts with the other key molecular machineries of the cell.