Robust Control in Power Systems


Book Description

Robust Control in Power Systems deals with the applications of new techniques in linear system theory to control low frequency oscillations in power systems. The book specifically focuses on the analysis and damping of inter-area oscillations in the systems which are in the range of 0.2-1 Hz. The damping control action is injected through high power electronic devices known as flexible AC transmission system (FACTS) controllers. Three commonly used FACTS controllers: controllable series capacitors (CSCs) controllable phase shifters (CPSs) and static var compensators (SVCs) have been used in this book to control the inter-area oscillations. The overview of linear system theory from the perspective of power system control is explained through examples. The damping control design is formulated as norm optimization problem. The H_infinity, H2 norm of properly defined transfer functions are minimized in linear matrix inequalities (LMI) framework to obtain desired performance and stability robustness. Both centralized and decentralized control structures are used. Usually the transmission of feedback signal from a remote location encounters delays making it difficult to control the system. Smith predictor based approach has been successfully explored in this book as a solution to such a problem. Robust Control in Power Systems will be valuable to academicians in the areas of power, control and system theory, as well as professionals in the power industry.




Robust Power System Frequency Control


Book Description

This updated edition of the industry standard reference on power system frequency control provides practical, systematic and flexible algorithms for regulating load frequency, offering new solutions to the technical challenges introduced by the escalating role of distributed generation and renewable energy sources in smart electric grids. The author emphasizes the physical constraints and practical engineering issues related to frequency in a deregulated environment, while fostering a conceptual understanding of frequency regulation and robust control techniques. The resulting control strategies bridge the gap between advantageous robust controls and traditional power system design, and are supplemented by real-time simulations. The impacts of low inertia and damping effect on system frequency in the presence of increased distributed and renewable penetration are given particular consideration, as the bulk synchronous machines of conventional frequency control are rendered ineffective in emerging grid environments where distributed/variable units with little or no rotating mass become dominant. Frequency stability and control issues relevant to the exciting new field of microgrids are also undertaken in this new edition. As frequency control becomes increasingly significant in the design of ever-more complex power systems, this expert guide ensures engineers are prepared to deploy smart grids with optimal functionality.




Robust Control


Book Description

Comprehensive and up to date coverage of robust control theory and its application • Presented in a well-planned and logical way • Written by a respected leading author, with extensive experience in robust control • Accompanying website provides solutions manual and other supplementary material




Robust Power System Frequency Control


Book Description

Frequency control as a major function of automatic generation control is one of the important control problems in electric power system design and operation, and is becoming more signi?cant today because of the increasing size, changing structure, emerging new uncertainties, environmental constraints and the complexity of power systems. In the last two decades, many studies have focused on damping control and vo- age stability and the related issues, but there has been much less work on the power system frequency control analysis and synthesis. While some aspects of frequency control have been illustrated along with individual chapters, many conferences and technical papers, a comprehensive and sensible practical explanation of robust f- quency control in a book form is necessary. This book provides a thorough understanding of the basic principles of power system frequency behaviour in wide range of operating conditions. It uses simple frequency response models, control structures and mathematical algorithms to adapt modern robust control theorems with frequency control issue and conceptual exp- nations. Most developed control strategies are examined by real-time simulations. Practical methods for computer analysis and design are emphasized. This book emphasizes the physical and engineering aspects of the power s- tem frequency control design problem, providing a conceptual understanding of frequency regulation, and application of robust control techniques. The main aim is to develop an appropriate intuition relative to the robust load frequency regulation problem in real-world power systems, rather than to describe sophisticated mat- matical analytical methods.




Robust Control for Grid Voltage Stability: High Penetration of Renewable Energy


Book Description

This book makes the area of integration of renewable energy into the existing electricity grid accessible to engineers and researchers. This is a self-contained text which has models of power system devices and control theory necessary to understand and tune controllers in use currently. The new research in renewable energy integration is put into perspective by comparing the change in the system dynamics as compared to the traditional electricity grid. The emergence of the voltage stability problem is motivated by extensive examples. Various methods to mitigate this problem are discussed bringing out their merits clearly. As a solution to the voltage stability problem, the book covers the use of FACTS devices and basic control methods. An important contribution of this book is to introduce advanced control methods for voltage stability. It covers the application of output feedback methods with a special emphasis on how to bound modelling uncertainties and the use of robust control theory to design controllers for practical power systems. Special emphasis is given to designing controllers for FACTS devices to improve low-voltage ride-through capability of induction generators. As generally PV is connected in low voltage distribution area, this book also provides a systematic control design for the PV unit in distribution systems. The theory is amply illustrated with large IEEE Test systems with multiple generators and dynamic load. Controllers are designed using Matlab and tested using full system models in PSSE.




A Course in Robust Control Theory


Book Description

During the 90s robust control theory has seen major advances and achieved a new maturity, centered around the notion of convexity. The goal of this book is to give a graduate-level course on this theory that emphasizes these new developments, but at the same time conveys the main principles and ubiquitous tools at the heart of the subject. Its pedagogical objectives are to introduce a coherent and unified framework for studying the theory, to provide students with the control-theoretic background required to read and contribute to the research literature, and to present the main ideas and demonstrations of the major results. The book will be of value to mathematical researchers and computer scientists, graduate students planning to do research in the area, and engineering practitioners requiring advanced control techniques.




Uncertain Models and Robust Control


Book Description

This coherent introduction to the theory and methods of robust control system design clarifies and unifies the presentation of significant derivations and proofs. The book contains a thorough treatment of important material of uncertainties and robust control otherwise scattered throughout the literature.




Robust Control Systems with Genetic Algorithms


Book Description

In recent years, new paradigms have emerged to replace-or augment-the traditional, mathematically based approaches to optimization. The most powerful of these are genetic algorithms (GA), inspired by natural selection, and genetic programming, an extension of GAs based on the optimization of symbolic codes. Robust Control Systems with Genetic Algorithms builds a bridge between genetic algorithms and the design of robust control systems. After laying a foundation in the basics of GAs and genetic programming, it demonstrates the power of these new tools for developing optimal robust controllers for linear control systems, optimal disturbance rejection controllers, and predictive and variable structure control. It also explores the application of hybrid approaches: how to enhance genetic algorithms and programming with fuzzy logic to design intelligent control systems. The authors consider a variety of applications, such as the optimal control of robotic manipulators, flexible links and jet engines, and illustrate a multi-objective, genetic algorithm approach to the design of robust controllers with a gasification plant case study. The authors are all masters in the field and clearly show the effectiveness of GA techniques. Their presentation is your first opportunity to fully explore this cutting-edge approach to robust optimal control system design and exploit its methods for your own applications.




Robust Control and Filtering of Singular Systems


Book Description

Singular systems have been widely studied in the past two decades due to their extensive applications in modelling and control of electrical circuits, power systems, economics and other areas. Interest has grown recently in the stability analysis and control of singular systems with parameter uncertainties due to their frequent presence in dynamic systems, which is much more complicated than that of state-space systems because controllers must be designed so that the closed-loop system is not only robustly stable, but also regular and impulse-free (in the continuous case) or causal (in the discrete case), while the latter two issues do not arise in the state-space case. This monograph aims to present up-to-date research developments and references on robust control and filtering of uncertain singular systems in a unified matrix inequality setting. It provides a coherent approach to studying control and filtering problems as extensions of state-space systems without the commonly used slow-fast decomposition. It contains valuable reference material for researchers wishing to explore the area of singular systems, and its contents are also suitable for a one-semester graduate course.




Nonlinear and Robust Control of PDE Systems


Book Description

The interest in control of nonlinear partial differential equation (PDE) sys tems has been triggered by the need to achieve tight distributed control of transport-reaction processes that exhibit highly nonlinear behavior and strong spatial variations. Drawing from recent advances in dynamics of PDE systems and nonlinear control theory, control of nonlinear PDEs has evolved into a very active research area of systems and control. This book the first of its kind- presents general methods for the synthesis of nonlinear and robust feedback controllers for broad classes of nonlinear PDE sys tems and illustrates their applications to transport-reaction processes of industrial interest. Specifically, our attention focuses on quasi-linear hyperbolic and parabolic PDE systems for which the manipulated inputs and measured and controlled outputs are distributed in space and bounded. We use geometric and Lyapunov-based control techniques to synthesize nonlinear and robust controllers that use a finite number of measurement sensors and control actuators to achieve stabilization of the closed-loop system, output track ing, and attenuation of the effect of model uncertainty. The controllers are successfully applied to numerous convection-reaction and diffusion-reaction processes, including a rapid thermal chemical vapor deposition reactor and a Czochralski crystal growth process. The book includes comparisons of the proposed nonlinear and robust control methods with other approaches and discussions of practical implementation issues.