Optimal Spacecraft Rotational Maneuvers


Book Description

This monograph has grown out of the authors' recent work directed toward solving a family of problems which arise in maneuvering modern spacecraft. The work ranges from fundamental developments in analytical dynamics and optimal control to a significant collection of example applications. The primary emphasis herein is upon the most central analytical and numerical methods for determining optimal rotational maneuvers of spacecraft. The authors focus especially upon the large angle nonlinear maneuvers, and also consider large rotational maneuvers of flexible vehicles with simultaneous vibration suppression/arrest. Each chapter includes a list of references.The book provides much new material which will be of great interest to practising professionals and advanced graduate students working in the general areas of spacecraft technology, applied mathematics, optimal control theory, and numerical optimization. Chapter 11 in particular presents new information that will be found widely useful for terminal control and tracking maneuvers.




Fast Satellite Attitude Maneuver and Control


Book Description

Fast Satellite Attitude Maneuver and Control introduces the concept of agile satellites and corresponding fast maneuver attitude control systems, systematically and comprehensively presenting recent research results of fast maneuver attitude control for agile satellites by using advanced nonlinear control techniques. This reference book focuses on modeling and attitude control, considering different actuator combinations, actuator installation deviation, actuator fault, and flexible appendage coupling effect for agile satellites. The book provides a unified platform for understanding and applicability of agile satellites fast maneuverer and stabilization control for different purposes. It will be an excellent resource for researchers working on spacecraft design, nonlinear control systems, vehicle systems and complex control systems. - Unifies existing and emerging concepts concerning nonlinear control theory, fault tolerant, and attitude control for agile satellites - Provides a series of the latest results, including, but not limited to, fast maneuverer and stabilization control, hybrid actuator control, nonlinear attitude control, fault tolerant control, and active vibration suppression towards agile satellites - Comprehensively captures recent advances of theory, technological aspects and applications of fast maneuverer and stabilization control in agile satellites - Addresses research problems in each chapter, along with numerical and simulation results that reflect engineering practice and demonstrate the focus of developed analysis and synthesis approaches - Contains comprehensive, up-to-date references, which play an indicative role for further study










Advances in Spacecraft Systems and Orbit Determination


Book Description

"Advances in Spacecraft Systems and Orbit Determinations", discusses the development of new technologies and the limitations of the present technology, used for interplanetary missions. Various experts have contributed to develop the bridge between present limitations and technology growth to overcome the limitations. Key features of this book inform us about the orbit determination techniques based on a smooth research based on astrophysics. The book also provides a detailed overview on Spacecraft Systems including reliability of low-cost AOCS, sliding mode controlling and a new view on attitude controller design based on sliding mode, with thrusters. It also provides a technological roadmap for HVAC optimization. The book also gives an excellent overview of resolving the difficulties for interplanetary missions with the comparison of present technologies and new advancements. Overall, this will be very much interesting book to explore the roadmap of technological growth in spacecraft systems.




Spacecraft Dynamics and Control


Book Description

Satellites are used increasingly in telecommunications, scientific research, surveillance, and meteorology, and these satellites rely heavily on the effectiveness of complex onboard control systems. This 1997 book explains the basic theory of spacecraft dynamics and control and the practical aspects of controlling a satellite. The emphasis throughout is on analyzing and solving real-world engineering problems. For example, the author discusses orbital and rotational dynamics of spacecraft under a variety of environmental conditions, along with the realistic constraints imposed by available hardware. Among the topics covered are orbital dynamics, attitude dynamics, gravity gradient stabilization, single and dual spin stabilization, attitude maneuvers, attitude stabilization, and structural dynamics and liquid sloshing.




Space Station Systems


Book Description







Proceedings of the 2015 Chinese Intelligent Automation Conference


Book Description

Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.