Rock Mechanics on a Geological Base


Book Description

Until a few years ago, hydropower, road tunneling and mining were the main fields interested in rock mechanics. Now, however, rock mechanics is becoming increasingly important in many more branches - the most significant globally being the disposal of hazardous, especially radiaoctive, waste in deeply located repositories. This has raised a number of new aspects on the mechanical behaviour of large rock masses hosting repositories and of smaller rock elements forming the nearfield of tunnels and boreholes with waste containers. The geological background and above all rock structure form the basis of this book. The structural scheme proposed is referred to explain the scale-dependent behaviour of rock. Thus, the reason for differences in strength and strain properties of different types and volumes of rocks is shown in a very clear fasion, using simple material models and very basic numerical models.The author's academic background in both geology and soil and rock mechanics and his long experience in practical design and construction work has led to an unusually pedagogic way of dealing with the subject. The book is intended for use by consultants in engineering geology and waste disposal and by students of these subjects. However, engineers and geologists with a limited background in stress/strain and fracture theory and computer-based calculation methods will also find the book attractive.




Rock Mechanics Through Project-Based Learning


Book Description

Traditional textbooks on rock mechanics often fail to engage students in the learning process as such books are packed with theory that students are unlikely to use in their future employment. In contrast, this book delivers the fundamentals of rock mechanics using a more practical and engaging project-based approach which simulates what practitioners do in their real-life practice. This book will be of great help to those who would like to learn practical aspects of rock mechanics and better understand how to apply theory to solve real engineering problems. This book covers geology, rock mechanics principles, and practical applications such as rock falls, slope stability analysis and engineering problems in tunnels. Throughout the whole book, the reader is engaged in project-based work so that the reader can experience what rock mechanics is like and clearly see why it is an important part of geotechnical engineering. The project utilizes real field and laboratory data while the relevant theory needed to execute the project is linked to each project task. In addition, each section of the book contains several exercises and quiz questions to scaffold learning. Some problems include open-ended questions to encourage the reader to exercise their judgement and develop practical skills. To foster the learning process, solutions to all questions are provided to allow for learning feedback.




Rock Mechanics on a Geological Base


Book Description

Until a few years ago, hydropower, road tunneling and mining were the main fields interested in rock mechanics. Now, however, rock mechanics is becoming increasingly important in many more branches - the most significant globally being the disposal of hazardous, especially radiaoctive, waste in deeply located repositories. This has raised a number of new aspects on the mechanical behaviour of large rock masses hosting repositories and of smaller rock elements forming the nearfield of tunnels and boreholes with waste containers. The geological background and above all rock structure form the basis of this book. The structural scheme proposed is referred to explain the scale-dependent behaviour of rock. Thus, the reason for differences in strength and strain properties of different types and volumes of rocks is shown in a very clear fasion, using simple material models and very basic numerical models. The author's academic background in both geology and soil and rock mechanics and his long experience in practical design and construction work has led to an unusually pedagogic way of dealing with the subject. The book is intended for use by consultants in engineering geology and waste disposal and by students of these subjects. However, engineers and geologists with a limited background in stress/strain and fracture theory and computer-based calculation methods will also find the book attractive.




Geologic Fracture Mechanics


Book Description

Introduction to geologic fracture mechanics covering geologic structural discontinuities from theoretical and field-based perspectives.




Rock Fractures in Geological Processes


Book Description

Rock fractures control many of Earth's dynamic processes, including plate-boundary development, tectonic earthquakes, volcanic eruptions, and fluid transport in the crust. An understanding of rock fractures is also essential for effective exploitation of natural resources such as ground water, geothermal water, and petroleum. This book combines results from fracture mechanics, materials science, rock mechanics, structural geology, hydrogeology, and fluid mechanics to explore and explain fracture processes and fluid transport in the crust. Basic concepts are developed from first principles and illustrated with worked examples linking models of geological processes to real field observations and measurements. Many additional examples and exercises are provided online, allowing readers to practise formulating and quantitative testing of models. Rock Fractures in Geological Processes is designed for courses at the advanced undergraduate and graduate level but also forms a vital resource for researchers and industry professionals concerned with fractures and fluid transport in the Earth's crust.




Petroleum Rock Mechanics


Book Description

Petroleum Rock Mechanics: Drilling Operations and Well Design, Second Edition, keeps petroleum and drilling engineers centrally focused on the basic fundamentals surrounding geomechanics, while also keeping them up-to-speed on the latest issues and practical problems. Updated with new chapters on operations surrounding shale oil, shale gas, and hydraulic fracturing, and with new sections on in-situ stress, drilling design of optimal mud weight, and wellbore instability analysis, this book is an ideal resource. By creating a link between theory with practical problems, this updated edition continues to provide the most recent research and fundamentals critical to today's drilling operations. - Helps readers grasp the techniques needed to analyze and solve drilling challenges, in particular wellbore instability analysis - Teaches rock mechanic fundamentals and presents new concepts surrounding sand production and hydraulic fracturing operations - Includes new case studies and sample problems to practice




Engineering Rock Mechanics


Book Description

Engineering rock mechanics is the discipline used to design structures built in rock. These structures encompass building foundations, dams, slopes, shafts, tunnels, caverns, hydroelectric schemes, mines, radioactive waste repositories and geothermal energy projects: in short, any structure built on or in a rock mass. Despite the variety of projects that use rock engineering, the principles remain the same. Engineering Rock Mechanics clearly and systematically explains the key principles behind rock engineering. The book covers the basic rock mechanics principles; how to study the interactions between these principles and a discussion on the fundamentals of excavation and support and the application of these in the design of surface and underground structures. Engineering Rock Mechanics is recommended as an across-the-board source of information for the benefit of anyone involved in rock mechanics and rock engineering.




Practical Rock Mechanics


Book Description

This text provides an introduction for graduate students, as well as engineering geologists and geotechnical engineers. It is also relevant to those working in nuclear waste disposal and oil and gas production. The early chapters deal with fundamental mechanics and physics as they apply to rock masses. It provides an introduction to the geological processes that give rise to the nature of rock masses and control their mechanical behavior. It discusses stresses in the earth's crust and explains methods of measurement and prediction.




Fundamentals of Engineering Geology


Book Description

Fundamentals of Engineering Geology discusses geomorphological processes, particularly the linkages between geology, geo-technics, rock mechanics, soil mechanics, and foundation design. The book reviews igneous rocks, metamorphic rocks, sedimentary rocks, and stratigraphy. Stratigraphy is based on three fundamental principles, namely, the "Law of Superposition, the ""Law of Faunal Succession




Rock Mechanics


Book Description

This new edition has been completely revised to reflect the notable innovations in mining engineering and the remarkable developments in the science of rock mechanics and the practice of rock angineering taht have taken place over the last two decades. Although "Rock Mechanics for Underground Mining" addresses many of the rock mechanics issues that arise in underground mining engineering, it is not a text exclusively for mining applications. Based on extensive professional research and teaching experience, this book will provide an authoratative and comprehensive text for final year undergraduates and commencing postgraduate stydents. For profesional practitioners, not only will it be of interests to mining and geological engineers, but also to civil engineers, structural mining geologists and geophysicists as a standard work for professional reference purposes.