After the Fires


Book Description

Americans currently choose their president through the electoral college, an extraordinarily complex mechanism that may elect a candidate who does not receive the most votes. In this provocative book, George Edwards III argues that, contrary to what supporters of the electoral college claim, there is no real justification for a system that might violate majority rule. Drawing on systematic data, Edwards finds that the electoral college does not protect the interests of small states or racial minorities, does not provide presidents with effective coalitions for governing, and does little to protect the American polity from the alleged harms of direct election of the president. In fact, the electoral college distorts the presidential campaign so that candidates ignore most small states and some large ones and pay little attention to minorities, and it encourages third parties to run presidential candidates and discourages party competition in many states. Edwards demonstrates effectively that direct election of the president without a runoff maximizes political equality and eliminates the distortions in the political system caused by the electoral college.







Impact of Wildfire on Annual Water Yield in Large Watersheds


Book Description

Available studies on the effects of wildfire on water yield were conducted in small size watersheds (10km2) and little is known on the scalability of those findings to large watersheds. However, the frequency and occurrence of wildfires that burn large watersheds (100km2) have been increasing in the last decades, resulting on the need to predict their impacts on watershed hydrology. The impact of wildfire on watershed annual water yield is constrained by a complex interaction among several processes, which include hydrologic, geologic, ecologic, climatic alterations. This study investigates short- and long-term responses of annual water yield changes due to wildfire in large watersheds within a paired watershed framework. We, also, propose a new theoretical approach based on the Budyko framework to predict the change in annual water yield due to wildfires, which was originally proposed to explore alterations of water and energy balance within burned watersheds. Long-term responses of annual water yield were predicted by analyzing residuals between annual water yields measured in the field and estimated with paired watershed regression models. Paired watershed analyses were applied to 34 pairs between 11 burned watersheds and 8 unburned watersheds in the Salmon River and Payette River basin (Central Idaho USA), Yellowstone National Park (Wyoming, USA), and Klamath River basin (California, USA). The Budyko framework was conducted in 8 burned watersheds for 10 wildfires, were statistically significant from paired watershed analyses. The Budyko framework was applied both at the yearly time scale (one point for each year) and as originally developed as time averaged (one point for pre and one for post-fire period). This study employed (1) a simple linear model with evaporative index (AET/P) and (2) Fu [1981]'s equation with relative evaporative index (1-Q/P). Results show that annual water yield generally increases after wildfires that burned more than 10% of drainage area with negligible and undetectable changes for smaller burned areas. Exceptions to this trend are for watersheds whose hydrological system is dominated by baseflows (with large ground water storage) and those whose wildfire mainly burned short vegetation. Annual water yield tends to return toward pre-fire condition following the Kuczera's curve, which is related with changes in water demand following regrowth or resuccession of burned trees/vegetation. Post-fire annual water yield increased with burned area, and this correlation was more evident in Mediterranean than in arid climate regions. Post-fire change in annual water yield increases proportionally with drainage area in small watersheds, but this relationship is limited in large watersheds. Results of the Budyko framework show decrease in evapotranspiration rate in most burned watersheds. Reduction in evapotranspiration results in an increase of annual water yield. On the other hand, increase in evaporative index was detected in burned watershed where trees grew quickly during the post-fire period. Climatic conditions can affect the hydrological response during post-fire. Weather condition is an important factor for estimating the annual water yield responses against wildfire. Budyko framework shows that wildfire impact is mitigated under wet weather condition or enhanced under dry weather condition. Results of paired watershed analysis and Budyko framework show a good agreement that post-fire annual water yield responses are strongly correlated with changes in evapotranspiration rate associated with tree mortality or regrowth rate.







Forests & Water Guidelines


Book Description

This work advises owners and managers how woodlands and forests influence the freshwater ecosystem, and gives guidance on how operations should be carried out in order to protect and enhance the water environment. The guidelines apply equally to forest enterprises and the private sector.




Estimating Postfire Water Production in the Pacific Northwest


Book Description

Two hydrologic models were adapted to estimate postfire changer in water yield in Pacific Northwest watersheds. The WRENSS version of the simulation model PROSPER is used for hydrologic regimes dominated by rainfall: it calculates water available for streamflow onthe basis of seasonal precipitation and leaf area index. The WRENSS version of the simulation model WATBAL is used for hydrologic regimes dominated by snowfall; it calculates water available for streamflow based on seasonal precipitation, energy aspect and cover density. The PROSPER and WATBAL models estimate large postfire increases in water available for streamflow only for fires that have removed more than 50 percent of the leaf area are cover density, respectively. Guidelines for selecting appropriate models, and tables and figures for calculating postfire water yield are presented. This simulation approach should be useful for estimating long-term effects of fire on water production within the framework of land management planning.







Wildland Fire Impacts on Water Yield Across the Contiguous United States


Book Description

Wildland fires in the contiguous United States (CONUS) have increased in size and severity, but much remains unclear about the impact of fire size and burn severity on water supplies used for drinking, irrigation, industry, and hydropower. While some have investigated large-scale fire patterns, long-term effects on runoff, and the simultaneous effect of fire and climate trends on surface water yield, no studies account for all these factors and their interactions at the same time. In this report, we present critical new information for the National Cohesive Wildland Fire Management Strategy—a first-time CONUS-wide assessment of observed and potential wildland fire impacts on surface water yield. First, we analyzed data from 168 fire-affected locations, collected between 1984 and 2013, with machine learning and used climate elasticity models to correct for the local climate baseline impact. Stream gage data show that annual river flow increased most in the Lower Mississippi and Lower and Upper Colorado water resource regions, however they do not show which portion of this increase is caused by fire and which portion results from local climate trends. Our machine learning model identified local climate trends as the main driver of water yield change and determined wildland fires must affect at least 19 percent of a watershed >10 km2 to change its annual water yield. A closer look at 32 locations with fires covering at least 19 percent of a watershed >10 km2 revealed that wildfire generally enhanced annual river flow. Fires increased river flow relatively the most in the Lower Colorado, Pacific Northwest, and California regions. In the Lower Colorado and Pacific Northwest regions, flow increased despite post-fire drought conditions. In southern California, post-fire drought effects masked the flow enhancement attributed to wildfire, meaning that annual water yield declined but not as much as expected based on the decline in precipitation. Prescribed burns in the Southeastern United States did not produce a widespread effect on river flow, because the area affected was typically too small and characterized by only low burn severity. In the second stage of the assessment, we performed full-coverage simulations of the CONUS with the Water Supply Stress Index (WaSSI) hydrologic model (88,000 HUC-12-level watersheds) for the period between 2001 and 2010. This enables us to fill in the gaps of areas with scarce data and to identify regions with large potential increases in post-fire annual water yield (+10 to +50 percent): mid- to high-elevation forests in northeastern Washington, northwestern Montana, central Minnesota, southern Utah, Colorado, and South Dakota, and coastal forests in Georgia and northern Florida. A hypothetical 20-percent forest burn impact scenario for the CONUS suggests that surface yield can increase up to +10 percent in most watersheds, and even more in some watersheds depending on climate, soils, and vegetation. The insights gained from this quantitative analysis have major implications for flood mitigation and watershed restoration, and are vital to forest management policies aimed at reducing fire impact risk and improving water supply under a changing climate.