The Role of Fluids in Crustal Processes


Book Description

Water and other fluids play a vital role in the processes that shape the earth's crust, possibly even influencing earthquakes and volcanism. Fluids affect the movement of chemicals and heat in the crust, and they are the major factor in the formation of hydrothermal ore deposits. Yet, fluids have been overlooked in many geologic investigations. The Role of Fluids in Crustal Processes addresses this lack of attention with a survey of what experts know about the role of fluids in the Earth's crustâ€"and what future research can reveal. The overview discusses factors that affect fluid movement and the coupled equations that represent energy and mass transport processes, chemical reactions, and the relation of fluids to stress distribution.




Geology and Water


Book Description

Water is one of the world's threatened resources: it is also a substance of importance in Geology. For some years I have felt the need for a book that sets out the fundamentals of fluid mechanics, written for geologists rather than engineers. The efforts to repair my own deficiencies in this respect led me along various unfamiliar paths, few of which were unrewarding. This book is the result of my journeys through the literature and as a geologist in several parts of the world. It has been written for students of geology of all ages, in the simplest terms possible, and it has one objective: to provide a basis for an understanding of the mechanical role of water in geology. It has not been written for experts in ground water hydrology, or specialists in the fluid aspects of structural geology: it has been written for geologists like me who are not very good mathematicians, so that we can take water better into account in our normal geological work, whatever it might be. The fundamentals apply equally to mineralization, geochemistry, and vulcanology although they have not been specifically mentioned. It has also been written for the university student of geology so that he or she may start a career with some appreciation of the importance of water, and understanding of its movement.




Groundwater Science


Book Description

Groundwater Science, Second Edition — winner of a 2014 Textbook Excellence Award (Texty) from The Text and Academic Authors Association — covers groundwater's role in the hydrologic cycle and in water supply, contamination, and construction issues. It is a valuable resource for students and instructors in the geosciences (with focuses in hydrology, hydrogeology, and environmental science), and as a reference work for professional researchers. This interdisciplinary text weaves important methods and applications from the disciplines of physics, chemistry, mathematics, geology, biology, and environmental science, introducing you to the mathematical modeling and contaminant flow of groundwater. New to the Second Edition: - New chapter on subsurface heat flow and geothermal systems - Expanded content on well construction and design, surface water hydrology, groundwater/ surface water interaction, slug tests, pumping tests, and mounding analysis. - Updated discussions of groundwater modeling, calibration, parameter estimation, and uncertainty - Free software tools for slug test analysis, pumping test analysis, and aquifer modeling - Lists of key terms and chapter contents at the start of each chapter - Expanded end-of-chapter problems, including more conceptual questions - Winner of a 2014 Texty Award from the Text and Academic Authors Association - Features two-color figures - Includes homework problems at the end of each chapter and worked examples throughout - Provides a companion website with videos of field exploration and contaminant migration experiments, PDF files of USGS reports, and data files for homework problems - Offers PowerPoint slides and solution manual for adopting faculty




The Seismogenic Zone of Subduction Thrust Faults


Book Description

Subduction zones, one of the three types of plate boundaries, return Earth's surface to its deep interior. Because subduction zones are gently inclined at shallow depths and depress Earth's temperature gradient, they have the largest seismogenic area of any plate boundary. Consequently, subduction zones generate Earth's largest earthquakes and most destructive tsunamis. As tragically demonstrated by the Sumatra earthquake and tsunami of December 2004, these events often impact densely populated coastal areas and cause large numbers of fatalities. While scientists have a general understanding of the seismogenic zone, many critical details remain obscure. This volume attempts to answer such fundamental concerns as why some interplate subduction earthquakes are relatively modest in rupture length (greater than 100 km) while others, such as the great (M greater than 9) 1960 Chile, 1964 Alaska, and 2004 Sumatra events, rupture along 1000 km or more. Contributors also address why certain subduction zones are fully locked, accumulating elastic strain at essentially the full plate convergence rate, while others appear to be only partially coupled or even freely slipping; whether these locking patterns persist through the seismic cycle; and what is the role of sediments and fluids on the incoming plate. Nineteen papers written by experts in a variety of fields review the most current lab, field, and theoretical research on the origins and mechanics of subduction zone earthquakes and suggest further areas of exploration. They consider the composition of incoming plates, laboratory studies concerning sediment evolution during subduction and fault frictional properties, seismic and geodetic studies, and regional scale deformation. The forces behind subduction zone earthquakes are of increasing environmental and societal importance.







Open-file Report


Book Description




Passive Seismic Monitoring of Induced Seismicity


Book Description

The past few decades have witnessed remarkable growth in the application of passive seismic monitoring to address a range of problems in geoscience and engineering, from large-scale tectonic studies to environmental investigations. Passive seismic methods are increasingly being used for surveillance of massive, multi-stage hydraulic fracturing and development of enhanced geothermal systems. The theoretical framework and techniques used in this emerging area draw on various established fields, such as earthquake seismology, exploration geophysics and rock mechanics. Based on university and industry courses developed by the author, this book reviews all the relevant research and technology to provide an introduction to the principles and applications of passive seismic monitoring. It integrates up-to-date case studies and interactive online exercises, making it a comprehensive and accessible resource for advanced students and researchers in geophysics and engineering, as well as industry practitioners.




Groundwater in Geologic Processes


Book Description

The 2006 second edition of this well received and widely adopted textbook has been extensively revised to provide a more comprehensive treatment of hydromechanics (the coupling of groundwater flow and deformation), to incorporate findings from the substantial body of research published since the first edition, and to include three new chapters on compaction and diagenesis, metamorphism, and subsea hydrogeology. The opening section develops basic theory of groundwater motion, fluid-solid mechanical interaction, solute transport, and heat transport. The second section applies flow, hydromechanics, and transport theory in a generalized geologic context, and focuses on particular geologic processes and environments. A systematic presentation of theory and application coupled with problem sets to conclude each chapter make this text ideal for use by advanced undergraduate and graduate-level hydrogeologists and geologists. It also serves as an invaluable reference for professionals in the field.




Experimental Rock Deformation - The Brittle Field


Book Description

This monograph deals with the part of the field of ex-' perimental rock deformation that is dominated by the phenomena of brittle fracture on one scale or another. Thus a distinction has been drawn between the fields of brittle und ductile behaviour in rock, corresponding more or less to a distinction between the phenomena of fracture and flow. It is hoped eventually to present a survey of the ductile field in a separate volume. The last chapter of this volume deals with the transition between the two fields. The scope of this survey has been limited to the mec.hanical properties of rock viewed as a material on the laboratory scale. Thus, the topic and approach is of a "materials science" kind rather than of a "structures" kind. We are dealing with only one part of the wider field of rock mechanics, which also includes structural or boundary value problems, for example, those of the stability of slopes, the collapse of mine openings, earth quakes, the folding of stratified rock, and the convec tive motion of the earth's mantle. One topic thus ex cluded is the role of jointing, which it is commonly necessary to take into account in applications in engi neering and mining, and probably often in geology too.