The Social Biology of Microbial Communities


Book Description

Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.




Manual of Environmental Microbiology


Book Description

The most definitive manual of microbes in air, water, and soil and their impact on human health and welfare. • Incorporates a summary of the latest methodology used to study the activity and fate of microorganisms in various environments. • Synthesizes the latest information on the assessment of microbial presence and microbial activity in natural and artificial environments. • Features a section on biotransformation and biodegradation. • Serves as an indispensable reference for environmental microbiologists, microbial ecologists, and environmental engineers, as well as those interested in human diseases, water and wastewater treatment, and biotechnology.




Bacterial Physiology and Metabolism


Book Description

Recent determination of genome sequences for a wide range of bacteria has made in-depth knowledge of prokaryotic metabolic function essential in order to give biochemical, physiological, and ecological meaning to the genomic information. Clearly describing the important metabolic processes that occur in prokaryotes under different conditions and in different environments, this advanced text provides an overview of the key cellular processes that determine bacterial roles in the environment, biotechnology, and human health. Prokaryotic structure is described as well as the means by which nutrients are transported into cells across membranes. Glucose metabolism through glycolysis and the TCA cycle are discussed, as well as other trophic variations found in prokaryotes, including the use of organic compounds, anaerobic fermentation, anaerobic respiratory processes, and photosynthesis. The regulation of metabolism through control of gene expression and control of the activity of enzymes is also covered, as well as survival mechanisms used under starvation conditions.




Indicators for Waterborne Pathogens


Book Description

Recent and forecasted advances in microbiology, molecular biology, and analytical chemistry have made it timely to reassess the current paradigm of relying predominantly or exclusively on traditional bacterial indicators for all types of waterborne pathogens. Nonetheless, indicator approaches will still be required for the foreseeable future because it is not practical or feasible to monitor for the complete spectrum of microorganisms that may occur in water, and many known pathogens are difficult to detect directly and reliably in water samples. This comprehensive report recommends the development and use of a "tool box" approach by the U.S Environmental Protection Agency and others for assessing microbial water quality in which available indicator organisms (and/or pathogens in some cases) and detection method(s) are matched to the requirements of a particular application. The report further recommends the use of a phased, three-level monitoring framework to support the selection of indicators and indicator approaches.Â




The Ocean and Cryosphere in a Changing Climate


Book Description

The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.




Geomicrobiology


Book Description

Volume 35 of Reviews in Mineralogy defines and explore the topic of geomicrobiology. It is organized so as to first introduce the nature, diversity, and metabolic impact of microorganisms and the types of solid phases they interact with. This is followed by a discussion of processes that occur at cell surfaces, interfaces between microbes and minerals, and within cells, and the resulting mineral precipitation, dissolution, and changes in aqueous geochemistry. The volume concludes with a discussion of the carbon cycle over geologic time. Basis for this volume was the Short Course on Geomicrobiology presented by the Mineralogical Society of America on October 18 and 19, 1997, at the Alta Peruvian Lodge in Alta, Utah.




Model Ecosystems in Extreme Environments


Book Description

Model Ecosystems in Extreme Environments, Second Edition examines ecosystems at the most extreme habitats and their interaction with the environment, providing a key element in our understanding of the role and function of microorganisms in nature. The book highlights current topics in the field, such as biodiversity and the structure of microbial communities in extreme environments, the effects of extreme environmental conditions on microbial ecosystems, and ecological and evolutionary interactions in extreme environments, among other topics. It will be a valuable text for faculty and students working with extremophiles and/or microbial ecology and researchers, including astrobiologists, biologists, evolutionary scientists, astronomers, geochemists and oceanographers. - Explores, in detail, how microbial ecosystems thrive in extreme environments - Highlights the relevance of extremophiles as model ecosystems to the study of microbial ecology - Examines how extreme ecosystems can help our search for life on other planets




Laudato Si


Book Description

“In the heart of this world, the Lord of life, who loves us so much, is always present. He does not abandon us, he does not leave us alone, for he has united himself definitively to our earth, and his love constantly impels us to find new ways forward. Praise be to him!” – Pope Francis, Laudato Si’ In his second encyclical, Laudato Si’: On the Care of Our Common Home, Pope Francis draws all Christians into a dialogue with every person on the planet about our common home. We as human beings are united by the concern for our planet, and every living thing that dwells on it, especially the poorest and most vulnerable. Pope Francis’ letter joins the body of the Church’s social and moral teaching, draws on the best scientific research, providing the foundation for “the ethical and spiritual itinerary that follows.” Laudato Si’ outlines: The current state of our “common home” The Gospel message as seen through creation The human causes of the ecological crisis Ecology and the common good Pope Francis’ call to action for each of us Our Sunday Visitor has included discussion questions, making it perfect for individual or group study, leading all Catholics and Christians into a deeper understanding of the importance of this teaching.




THE STATE OF THE WORLD’s FOREST GENETIC RESOURCES


Book Description

The publication was prepared based on information provided by 86 countries, outcomes from regional and subregional consultations and commissioned thematic studies. It includes: •an overview of definitions and concepts related to Forest Genetic Resources (FGR) and a review of their value; •a description of the main drivers of changes; •the presentation of key emerging technologies; •an analysis of the current status of FGR conservation, use and related developments; •recommendations addressing the challenges and needs. By the FAO Commission on Genetic Resources for Food and Agriculture.




Biogeochemical Cycles


Book Description

Elements move through Earth's critical zone along interconnected pathways that are strongly influenced by fluctuations in water and energy. The biogeochemical cycling of elements is inextricably linked to changes in climate and ecological disturbances, both natural and man-made. Biogeochemical Cycles: Ecological Drivers and Environmental Impact examines the influences and effects of biogeochemical elemental cycles in different ecosystems in the critical zone. Volume highlights include: Impact of global change on the biogeochemical functioning of diverse ecosystems Biological drivers of soil, rock, and mineral weathering Natural elemental sources for improving sustainability of ecosystems Links between natural ecosystems and managed agricultural systems Non-carbon elemental cycles affected by climate change Subsystems particularly vulnerable to global change The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Author. Book Review: http://www.elementsmagazine.org/archives/e16_6/e16_6_dep_bookreview.pdf