Rough Set Theory and Granular Computing


Book Description

This monograph presents novel approaches and new results in fundamentals and applications related to rough sets and granular computing. It includes the application of rough sets to real world problems, such as data mining, decision support and sensor fusion. The relationship of rough sets to other important methods of data analysis – Bayes theorem, neurocomputing and pattern recognition is thoroughly examined. Another issue is the rough set based data analysis, including the study of decision making in conflict situations. Recent engineering applications of rough set theory are given, including a processor architecture organization for fast implementation of basic rough set operations and results concerning advanced image processing for unmanned aerial vehicles. New emerging areas of study and applications are presented as well as a wide spectrum of on-going research, which makes the book valuable to all interested in the field of rough set theory and granular computing.




Data Mining, Rough Sets and Granular Computing


Book Description

During the past few years, data mining has grown rapidly in visibility and importance within information processing and decision analysis. This is par ticularly true in the realm of e-commerce, where data mining is moving from a "nice-to-have" to a "must-have" status. In a different though related context, a new computing methodology called granular computing is emerging as a powerful tool for the conception, analysis and design of information/intelligent systems. In essence, data mining deals with summarization of information which is resident in large data sets, while granular computing plays a key role in the summarization process by draw ing together points (objects) which are related through similarity, proximity or functionality. In this perspective, granular computing has a position of centrality in data mining. Another methodology which has high relevance to data mining and plays a central role in this volume is that of rough set theory. Basically, rough set theory may be viewed as a branch of granular computing. However, its applications to data mining have predated that of granular computing.




Rough Set Theory and Granular Computing


Book Description

After 20 years of pursuing rough set theory and its applications a look on its present state and further prospects is badly needed. The monograph Rough Set Theory and Granular Computing edited by Masahiro Inuiguchi, Shoji Hirano and Shusaku Tsumoto meets this demand. It presents the newest developments in this area and gives fair picture of the state of the art in this domain. Firstly, in the keynote papers by Zdzislaw Pawlak, Andrzej Skowron and Sankar K. Pal the relationship of rough sets with other important methods of data analysis -Bayes theorem, neuro computing and pattern recognitio- is thoroughly examined. Next, several interesting generalizations of the the ory and new directions of research are presented. Furthermore application of rough sets in data mining, in particular, rule induction methods based on rough set theory is presented and discussed. Further important issue dis cussed in the monograph is rough set based data analysis, including study of decisions making in conflict situations. Last but not least, some recent engi neering applications of rough set theory are given. They include a proposal of rough set processor architecture organization for fast implementation of ba sic rough set operations and discussion of results concerning advanced image processing for unmanned aerial vehicle. Thus the monograph beside presenting wide spectrum of ongoing research in this area also points out new emerging areas of study and applications, which makes it a valuable source of information to all interested in this do main.




Rough – Granular Computing in Knowledge Discovery and Data Mining


Book Description

This book covers methods based on a combination of granular computing, rough sets, and knowledge discovery in data mining (KDD). The discussion of KDD foundations based on the rough set approach and granular computing feature illustrative applications.




Advances in Soft Computing


Book Description

Advances in Soft Computing contains the most recent developments in the field of soft computing in engineering design and manufacture. The book comprises a selection of papers that were first presented in June 1998 at the 3rd On-line World Conference on Soft Computing in Engineering Design and Manufacturing. Amongst these are four invited papers by World-renowned researchers in the field. Soft computing is a collection of methodologies which aim to exploit tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and low solution cost. The area of applications of soft computing is extensive. Principally the constituents of soft computing are: fuzzy computing, neuro-computing, genetic computing and probabilistic computing. The topics in this book are well focused on engineering design an d manufacturing. This broad collection of 43 research papers, has been arranged into nine parts by the editors. These include: Design Support Systems, Intelligent Control, Data Mining and New Topics in EA basics. The papers on evolutionary design and optimisation are of particular interest. Innovative techniques are explored and the reader is introduced to new, highly advanced research results. The editors present a unique collection of papers that provide a comprehensive overview of current developments in soft computing research around the world.




Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing


Book Description

This volume contains the papers selected for presentation at the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2003) held at Chongqing University of Posts and Telecommunications, Chongqing, P.R. China, May 26–29, 2003. There were 245 submissions for RSFDGrC 2003 excluding for 2 invited keynote papers and 11 invited plenary papers. Apart from the 13 invited papers, 114 papers were accepted for RSFDGrC 2003 and were included in this volume. The acceptance rate was only 46.5%. These papers were divided into 39 regular oral presentation papers (each allotted 8 pages), 47 short oral presentation papers (each allotted 4 pages) and 28 poster presentation papers (each allotted 4 pages) on the basis of reviewer evaluations. Each paper was reviewed by three referees. The conference is a continuation and expansion of the International Workshops on Rough Set Theory and Applications. In particular, this was the ninth meeting in the series and the first international conference. The aim of RSFDGrC2003 was to bring together researchers from diverse fields of expertise in order to facilitate mutual understanding and cooperation and to help in cooperative work aimed at new hybrid paradigms. It is our great pleasure to dedicate this volume to Prof. Zdzislaw Pawlak, who first introduced the basic ideas and definitions of rough sets theory over 20 years ago.




Rough-Neural Computing


Book Description

Soft computing comprises various paradigms dedicated to approximately solving real-world problems, e.g. in decision making, classification or learning; among these paradigms are fuzzy sets, rough sets, neural networks, genetic algorithms, and others. It is well understood now in the soft computing community that hybrid approaches combining various paradigms are very promising approaches for solving complex problems. Exploiting the potential and strength of both neural networks and rough sets, this book is devoted to rough-neuro computing which is also related to the novel aspect of computing based on information granulation, in particular to computing with words. It provides foundational and methodological issues as well as applications in various fields.




Rough Sets


Book Description

To-date computers are supposed to store and exploit knowledge. At least that is one of the aims of research fields such as Artificial Intelligence and Information Systems. However, the problem is to understand what knowledge means, to find ways of representing knowledge, and to specify automated machineries that can extract useful information from stored knowledge. Knowledge is something people have in their mind, and which they can express through natural language. Knowl edge is acquired not only from books, but also from observations made during experiments; in other words, from data. Changing data into knowledge is not a straightforward task. A set of data is generally disorganized, contains useless details, although it can be incomplete. Knowledge is just the opposite: organized (e.g. laying bare dependencies, or classifications), but expressed by means of a poorer language, i.e. pervaded by imprecision or even vagueness, and assuming a level of granularity. One may say that knowledge is summarized and organized data - at least the kind of knowledge that computers can store.




Granular Computing


Book Description

This book is about Granular Computing (GC) - an emerging conceptual and of information processing. As the name suggests, GC concerns computing paradigm processing of complex information entities - information granules. In essence, information granules arise in the process of abstraction of data and derivation of knowledge from information. Information granules are everywhere. We commonly use granules of time (seconds, months, years). We granulate images; millions of pixels manipulated individually by computers appear to us as granules representing physical objects. In natural language, we operate on the basis of word-granules that become crucial entities used to realize interaction and communication between humans. Intuitively, we sense that information granules are at the heart of all our perceptual activities. In the past, several formal frameworks and tools, geared for processing specific information granules, have been proposed. Interval analysis, rough sets, fuzzy sets have all played important role in knowledge representation and processing. Subsequently, information granulation and information granules arose in numerous application domains. Well-known ideas of rule-based systems dwell inherently on information granules. Qualitative modeling, being one of the leading threads of AI, operates on a level of information granules. Multi-tier architectures and hierarchical systems (such as those encountered in control engineering), planning and scheduling systems all exploit information granularity. We also utilize information granules when it comes to functionality granulation, reusability of information and efficient ways of developing underlying information infrastructures.




Granular Video Computing


Book Description

This volume links the concept of granular computing using deep learning and the Internet of Things to object tracking for video analysis. It describes how uncertainties, involved in the task of video processing, could be handled in rough set theoretic granular computing frameworks. Issues such as object tracking from videos in constrained situations, occlusion/overlapping handling, measuring of the reliability of tracking methods, object recognition and linguistic interpretation in video scenes, and event prediction from videos, are the addressed in this volume. The book also looks at ways to reduce data dependency in the context of unsupervised (without manual interaction/ labeled data/ prior information) training.This book may be used both as a textbook and reference book for graduate students and researchers in computer science, electrical engineering, system science, data science, and information technology, and is recommended for both students and practitioners working in computer vision, machine learning, video analytics, image analytics, artificial intelligence, system design, rough set theory, granular computing, and soft computing.