Rubber-Modified Thermoplastics


Book Description

Glassy and ductile plastics require toughening to improve their range of usefulness, particularly for engineering applications. Rubber-modified, toughened thermoplastics are already in widespread use. This review sets out to introduce this field and describe the state-of-the-art. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database gives useful references for further reading.




Handbook of Thermoplastic Elastomers


Book Description

Handbook of Thermoplastic Elastomers, Second Edition presents a comprehensive working knowledge of thermoplastic elastomers (TPEs), providing an essential introduction for those learning the basics, but also detailed engineering data and best practice guidance for those already involved in polymerization, processing, and part manufacture. TPEs use short, cost-effective production cycles, with reduced energy consumption compared to other polymers, and are used in a range of industries including automotive, medical, construction and many more. This handbook provides all the practical information engineers need to successfully utilize this material group in their products, as well as the required knowledge to thoroughly ground themselves in the fundamental chemistry of TPEs. The data tables included in this book assist engineers and scientists in both selecting and processing the materials for a given product or application. In the second edition of this handbook, all chapters have been reviewed and updated. New polymers and applications have been added — particularly in the growing automotive and medical fields — and changes in chemistry and processing technology are covered. - Provides essential knowledge of the chemistry, processing, properties, and applications for both new and established technical professionals in any industry utilizing TPEs - Datasheets provide "at-a-glance" processing and technical information for a wide range of commercial TPEs and compounds, saving readers the need to contact suppliers - Includes data on additional materials and applications, particularly in automotive and medical industries




Mixing of Vulcanisable Rubbers and Thermoplastic Elastomers


Book Description

This report describes the current state-of-the-art in mixing from a practical viewpoint. It begins by offering historical background against which the latest developments are set. It considers both batch and continuous systems, containing details of key developments by equipment manufacturers, with the different concepts discussed in layman's terms. This report also summarises the range of mixing techniques applied in the industry as well as methods for monitoring mixing quality both off- and on-line are also covered. Recent academic research in rubber mixing is briefly considered, providing an indication of possible future practical advances in this field. This review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.




Developments in Thermoplastic Elastomers


Book Description

Thermoplastic elastomers (TPEs) have the elastic behaviour of rubber and the processability of thermoplastics. The Freedonia Group has forecast that demand will expand by 6.4% per year to around 2.15 million tons in 2006. There is potential for these new, exciting materials to expand into the much larger thermoset rubber markets. This review includes comparisons between the two material types. There are three major types of TPE: block copolymers, rubber/plastic blends and dynamically vulcanised rubber/plastic alloys known as thermoplastic vulcanisates. The chemistry of these materials and how.




Thermoplastic Elastomers


Book Description

The nature and general properties of TPE's are explained, and the classes of materials considered in turn include styrenic block copolymers, polyether-esters, polyamides, polyurethanes, polyolefins and other miscellaneous systems. Developments in specific market sectors are also outlined. The review is supported by an extensive References and Abstracts section, containing over 400 abstracts, which provide a great deal more information on these useful materials.




Macromolecular Architectures


Book Description

Molecular manipulation of nano- and microstructures paves the way to produce organic polymer materials by design. Such architectures comprise both the synthesis and the kinetics and thermodynamics of macromolecular organization and is the theme of this volume. The book consists of four articles reviewing living polymerization to produce precisely defined linear polyesters, comparing them to other living polymerization techniques. The articles also deal with the synthesis of polymeric dendrimers, either by the convergent or divergent approach; block copolymers synthesis, to define micromorphology in high performance polymers; and thereby tailoring their thermal, chemical, mechanical and dielectrical properties, and finally kinetics and thermodynamics for microstructural organization in macroporous thermosets.




Current Topics in Elastomers Research


Book Description

From weather-proof tires and artificial hearts to the o-rings and valve seals that enable successful space exploration, rubber is an indispensable component of modern civilization. Stiff competition and stringent application requirements foster continuous challenges requiring manufacturers to fund ever-expanding research projects. However, this vas




Characterization of Polymer Blends


Book Description

Filling the gap for a reference dedicated to the characterization of polymer blends and their micro and nano morphologies, this book provides comprehensive, systematic coverage in a one-stop, two-volume resource for all those working in the field. Leading researchers from industry and academia, as well as from government and private research institutions around the world summarize recent technical advances in chapters devoted to their individual contributions. In so doing, they examine a wide range of modern characterization techniques, from microscopy and spectroscopy to diffraction, thermal analysis, rheology, mechanical measurements and chromatography. These methods are compared with each other to assist in determining the best solution for both fundamental and applied problems, paying attention to the characterization of nanoscale miscibility and interfaces, both in blends involving copolymers and in immiscible blends. The thermodynamics, miscibility, phase separation, morphology and interfaces in polymer blends are also discussed in light of new insights involving the nanoscopic scale. Finally, the authors detail the processing-morphology-property relationships of polymer blends, as well as the influence of processing on the generation of micro and nano morphologies, and the dependence of these morphologies on the properties of blends. Hot topics such as compatibilization through nanoparticles, miscibility of new biopolymers and nanoscale investigations of interfaces in blends are also addressed. With its application-oriented approach, handpicked selection of topics and expert contributors, this is an outstanding survey for anyone involved in the field of polymer blends for advanced technologies.




Polymer Blends


Book Description

This report begins by summarising the basis of polymer blending. This includes an outline of the techniques being used to characterise blends including spectroscopic techniques and rheometry. The types of polymer blends which have been studied are outlined. Methods of compatibilisation are discussed. The morphology of the phases in a blend is critical to property development - the types of morphology observed are described. Flow-induced morphology is described. Processing of blends and the effects on morphology are discussed including extrusion, thermoforming, blow moulding, injection moulding and foaming. The accompanying abstracts from the Rapra Polymer Library database provide useful further information and indicate sources of additional material.




Block Copolymers


Book Description

A summary of block copolymer chemical structures and synthesis. It discusses physical methods of characterization such as computer simulation, microhardness, dielectric spectroscopy, thermal mechanical relaxation, ultrasonic characterization, transmission electron microscopy, X-ray scattering, and NMR, among others. It also outlines rheological and processing parameters in the multiphase polymer systems with stable microstructures.




Recent Books