The Effect of Salinity on Membrane Transport Proteins in the Kidney of a Euryhaline Elasmobranch (Dasyatis Sabina)


Book Description

The renal reabsorption of urea and electrolytes is the primary mechanism underlying the osmoregulatory strategies of marine elasmobranchs. However, the sites and mechanisms by which these solutes are reabsorbed have yet to be elucidated. Based on the finding that the fractional reabsorption of urea is greater than 90%, we hypothesized that solute reabsorption occurs at multiple sites along the nephron of elasmobranchs. Histological techniques were utilized to map the tubular segments that comprise the nephron of the stingray, Dasyatis sabina. Immunohistochemistry was then utilized to localize facilitated urea transporter isoforms as well as Na-K+-ATPase within the kidney. Since exposure to low salinity has been shown to induce an increase in absolute reabsorption, the effect of exposure to low salinity on the abundance and localization of these membrane transporters was also determined. Kidneys were obtained from stingrays either maintained at control salinity (850 mOsmol/kg H2O) or subjected to a 50% decrease in salinity over 3 days. Immunohistochemical localization of strUT-1 was limited the second loop in the bundle zone. In contrast, staining for strUT-2 was observed in the Proximal-II and Distal-I segments within the bundle zone and in all segments of the sinus zone except Proximal IV. Na+-K+-ATPase was localized to Neck-II, Proximal-II, Intermediate-x, and Distal-I segments within the bundle zone and to Intermediate-I in the sinus zone. The abundance of the membrane transporters in whole tissue homogenates was not different between rays in control or low salinity. In contrast, the abundance of these transporters in the membrane fraction was significantly higher in rays subjected to low salinity. The findings suggest that in D. sabina, urea reabsorption occurs through facilitated urea transporters at multiple sites along the nephron. The increase in absolute solute reabsorption in low salinity may be due to the shuttling of membrane transport proteins to the plasma membrane.




The Physiology of Fishes


Book Description

New scientific approaches have dramatically evolved in the decade since The Physiology of Fishes was first published. With the genomic revolution and a heightened understanding of molecular biology, we now have the tools and the knowledge to apply a fresh approach to the study of fishes. Consequently, The Physiology of Fishes, Third Edition is not merely another updating, but rather an entire reworking of the original. To satisfy that need for a fresh approach, the editors have employed a new set of expert contributors steeped in the very latest research; their contemporary perspective pervades the entire text. In addition to new chapters on gas transport, temperature physiology, and stress, as well as one dedicated to functional genomics, readers will discover that many of these new contributors approach their material with a contemporary molecular perspective. While much of the material is new, the editors have completely adhered to the original’s style in creating a text that continues to be highly readable and perpetually insightful in bridging the gap between pure and applied science. The Physiology of Fishes, Third Edition, completely updated with a molecular perspective, continues to be regarded as the best single-volume general reference on all major areas of research in fish physiology. The Physiology of Fishes, Third Edition provides background information for advanced students as well as material of interest to marine and fisheries biologists, ichthyologists, and comparative physiologists looking to differentiate between the physiological strategies unique to fishes, and those shared with other organisms.




The Biology of Sharks and Rays


Book Description

The Biology of Sharks and Rays is a comprehensive resource on the biological and physiological characteristics of the cartilaginous fishes: sharks, rays, and chimaeras. In sixteen chapters, organized by theme, A. Peter Klimley covers a broad spectrum of topics, including taxonomy, morphology, ecology, and physiology. For example, he explains the body design of sharks and why the ridged, toothlike denticles that cover their entire bodies are present on only part of the rays’ bodies and are absent from those of chimaeras. Another chapter explores the anatomy of the jaws and the role of the muscles and teeth in jaw extension, seizure, and handling of prey. The chapters are richly illustrated with pictures of sharks, diagrams of sensory organs, drawings of the body postures of sharks during threat and reproductive displays, and maps showing the extent of the species’ foraging range and long-distance migrations. Each chapter commences with an anecdote from the author about his own personal experience with the topic, followed by thought-provoking questions and a list of recommended readings in the scientific literature. The book will be a useful textbook for advanced ichthyology students as well as an encyclopedic source for those seeking a greater understanding of these fascinating creatures.




The Effect of Organic Osmolytes on the Functional Properties of Parvalbumin from a Euryhaline Stingray


Book Description

ABSTRACT: Parvalbumin (PV) is an intracellular cation binding protein containing the helix-loop-helix divalent binding domain characteristic of the large EF hand super family of proteins. Parvalbumin was the first EF hand protein to be structurally characterized and is the model for understanding other EF hand proteins including troponin C, myosin light chain, and calmodulin. PV facilitates muscle relaxation by sequestering Ca2+ and has not yet been well studied in elasmobranch fish. The Atlantic stingray, Dasyatis sabina found along the Gulf of Mexico and southeastern Atlantic coasts, is euryhaline and is able to compensate for changing environmental salinity by altering plasma and intracellular solutes, primarily urea and the counteracting methylamines (betaine and TMAO). Compensation to changes in salinity of the habitat impacts the solute environment of intracellular proteins like PV. Thus, determining the impact of changes in in situ concentrations of these organic osmolytes on PV function in marine and freshwater acclimatized populations of D. sabina could provide insight into intracellular correlates of euryhaline tolerance for this species. Parvalbumins from both marine and freshwater D. sabina and the major PV isoform (II) from the freshwater teleost Cyprinus carpio (carp) were purified by gel permeation and DEAE chromatography.










Physiology of Elasmobranch Fishes: Internal Processes


Book Description

Fish Physiology: Physiology of Elasmobranch Fishes, Volume 34B is a useful reference for fish physiologists, biologists, ecologists, and conservation biologists. Following an increase in research on elasmobranchs due to the plight of sharks in today’s oceans, this volume compares elasmobranchs to other groups of fish, highlights areas of interest for future research, and offers perspective on future problems. Covering measurements and lab-and-field based studies of large pelagic sharks, this volume is a natural addition to the renowned Fish Physiology series. Provides needed comprehensive content on the physiology of elasmobranchs Offers a systems approach between structure and interaction with the environment and internal physiology Contains contributions by leading experts in their respective fields, under the guidance of internationally recognized and highly respected editors Highlights areas of interest for future research, including perspective on future problems




Fish Physiology: Euryhaline Fishes


Book Description

The need for ion and water homeostasis is common to all life. For fish, ion and water homeostasis is an especially important challenge because they live in direct contact with water and because of the large variation in the salt content of natural waters (varying by over 5 orders of magnitude). Most fish are stenohaline and are unable to move between freshwater and seawater. Remarkably, some fishes are capable of life in both freshwater and seawater. These euryhaline fishes constitute an estimated 3 to 5% of all fish species. Euryhaline fishes represent some of the most iconic and interesting of all fish species, from salmon and sturgeon that make epic migrations to intertidal mudskippers that contend with daily salinity changes. With the advent of global climate change and increasing sea levels, understanding the environmental physiology of euryhaline species is critical for environmental management and any mitigative measures. This volume will provide the first integrative review of euryhalinity in fish. There is no other book that focuses on fish that have the capacity to move between freshwater and seawater. The different challenges of salt and water balance in different habitats have led to different physiological controls and regulation, which heretofore has not been reviewed in a single volume. Collects and synthesizes the literature covering the state of knowledge of the physiology of euryhaline fish Provides the foundational information needed for researchers from a variety of fields, including fish physiology, conservation and evolutionary biology, genomics, ecology, ecotoxicology, and comparative physiology All authors are the leading researchers and emerging leaders in their fields