Scalar Field Cosmology


Book Description

This monograph discusses cosmological inflation and provides exact and slow roll solutions. It also reviews new and advanced approaches of exact solutions construction with canonical scalar fields, including application of generating functions methods, the superpotential and many others. This book presents the reduction of the Friedmann equation to the Abel equation, which is a very useful tool in cosmology. It offers new solutions and discusses its properties.Additionally, it touches upon the role of phantom scalar field cosmology and analyzes phantonical models. It describes brane cosmology with scalar fields, providing exact solutions construction using the superpotential method as well as Darboux transformations.This book provides detailed calculations throughout.




Cosmology in Scalar-Tensor Gravity


Book Description

Cosmology in Scalar-Tensor Gravity covers all aspects of cosmology in scalar-tensor theories of gravity. Considerable progress has been made in this exciting area of physics and this book is the first to provide a critical overview of the research. Among the topics treated are: -Scalar-tensor gravity and its limit to general relativity, -Effective energy-momentum tensors and conformal frames, -Gravitational waves in scalar-tensor cosmology, -Specific scalar-tensor theories, -Exact cosmological solutions and cosmological perturbations, -Scalar-tensor scenarios of the early universe and inflation, -Scalar-tensor models of quintessence in the present universe and their far-reaching consequences for the ultimate fate of the cosmos.




The Scalar-Tensor Theory of Gravitation


Book Description

A pedagogical overview of the theoretical ideas behind the cosmological constant problem, in particular the scalar-tensor theory, which is one of the most popular alternative theories of gravitation. Covering many developments in the field, including branes and quintessence, it will be an invaluable resource for graduate students and researchers alike.




Scalar Fields in Numerical General Relativity


Book Description

This book explores the use of numerical relativity (NR) methods to solve cosmological problems, and describes one of the first uses of NR to study inflationary physics. NR consists in the solution of Einstein's Equation of general relativity, which governs the evolution of matter and energy on cosmological scales, and in systems where there are strong gravitational effects, such as around black holes. To date, NR has mainly been used for simulating binary black hole and neutron star mergers like those detected recently by LIGO. Its use as a tool in fundamental problems of gravity and cosmology is novel, but rapidly gaining interest. In this thesis, the author investigates the initial condition problem in early universe cosmology - whether an inflationary expansion period could have "got going" from initially inhomogeneous conditions - and identifies criteria for predicting the robustness of particular models. State-of-the-art numerical relativity tools are developed in order to address this question, which are now publicly available.




Accelerated Cosmic Expansion


Book Description

Proceedings from the 2012 Fourth International Meeting on Gravitation and Cosmology, focusing on accelerated cosmic expansion This volume provides both an update and a review of the state of alternative theories of gravity in connection with the accelerated expansion of the universe issue. Different theoretical proposals exist to explain the acceleration in the cosmic expansion, generating the dark energy issue and opening the possibility to theories of gravity alternative to general relativity. Related issues such as the dark matter problem are also surveyed in order to give the readers profound insight on the subject from different points of view. Comprised of short talks and plenary lectures given by leading experts in the field, some of them with brilliant and historic contributions, the book allows the reader to find readable and referenced surveys in topics like f(R) theories, the dark matter and dark energy issues, Modified Newtonian Dynamics (MOND) scenarios, f(T) theories, scalar-tensor theories derived from non-Riemannian geometries, emergent universes, the cosmological constant and other topics of current interest for younger and senior physicists and graduate students. These proceedings are from the Fourth International Meeting on Gravitation and Cosmology, held in Guadalajara, Jalisco, México, from 20 - 25 May, 2012, was sponsored by ICTP- Trieste, Italy and COECyTJAL-Universidad de Guadalajara, México. This event is a series of scientific meetings started in 2004 in Cuba, focusing on current and selected topics in the fields of gravitation and cosmology.




Physical Foundations of Cosmology


Book Description

Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.




Noether's Theorem and Symmetry


Book Description

In Noether's original presentation of her celebrated theorem of 1918, allowances were made for the dependence of the coefficient functions of the differential operator which generated the infinitesimal transformation of the Action Integral upon the derivatives of the dependent variable(s), the so-called generalized, or dynamical, symmetries. A similar allowance is to be found in the variables of the boundary function, often termed a gauge function by those who have not read the original paper. This generality was lost after texts such as those of Courant and Hilbert or Lovelock and Rund confined attention to only point transformations. In recent decades, this diminution of the power of Noether's Theorem has been partly countered, in particular, in the review of Sarlet and Cantrijn. In this Special Issue, we emphasize the generality of Noether's Theorem in its original form and explore the applicability of even more general coefficient functions by allowing for nonlocal terms. We also look at the application of these more general symmetries to problems in which parameters or parametric functions have a more general dependence upon the independent variables.




Basics of Modern Cosmology


Book Description




Modern Cosmology


Book Description

An advanced text for senior undergraduates, graduate students and physical scientists in fields outside cosmology. This is a self-contained book focusing on the linear theory of the evolution of density perturbations in the universe, and the anisotropiesin the cosmic microwave background.




Primordial Cosmology


Book Description

Primordial Cosmology deals with one of the most puzzling and fascinating topics debated in modern physics — the nature of the Big Bang singularity. The authors provide a self-consistent and complete treatment of the very early Universe dynamics, passing through a concise discussion of the Standard Cosmological Model, a precise characterization of the role played by the theory of inflation, up to a detailed analysis of the anisotropic and inhomogeneous cosmological models. The most peculiar feature of this book is its uniqueness in treating advanced topics of quantum cosmology with a well-traced link to more canonical and pedagogical notions of fundamental cosmology.This book traces clearly the backward temporal evolution of the Universe, starting with the Robertson-Walker geometry and ending with the recent results of loop quantum cosmology in view of the Big Bounce. The reader is accompanied in this journey by an initial technical presentation which, thanks to the fundamental tools given earlier in the book, never seems heavy or obscure.