Scattering, Natural Surfaces, and Fractals


Book Description

Scattering, Natural Surfaces, and Fractals provides a comprehensive overview of electromagnetic scattering from natural surfaces, ranging from the classical to the more recent (fractal) approach. As remote sensing applications become increasingly important, this text provides readers with a solid background in interpretation, classification and thematization of microwave images. The "scattering problem is discussed in detail with emphasis on its application to electromagnetic wave propagation, remote sensing, radar detection, and electromagnetic diagnostics. Natural surface and fractals complete this treatise focusing on how the fractal model represents our natural environment and other planets in our solar system, most recently as used to research the planet Venus and Titan, one of the moons of Saturn. An example of how scattering, fractals, and natural surfaces are of great importance is the following: Natural oil slicks in the ocean have been found to be fractal while man-made ones (generated by illegal washing of oil carrying ships) are not. Processing of an ocean image from space may detect the latter by means of a fractal analysis. - An elegant and clear treatment of a rigorous topic with informative prose and realistic illustrations of scattering - Provides readers with a solid background in interpretation, classification, and thematization of microwave images - The only book available on fractal models and their application to scattering




Scattering, Two-Volume Set


Book Description

Part 1: SCATTERING OF WAVES BY MACROSCOPIC TARGET -- Interdisciplinary aspects of wave scattering -- Acoustic scattering -- Acoustic scattering: approximate methods -- Electromagnetic wave scattering: theory -- Electromagnetic wave scattering: approximate and numerical methods -- Electromagnetic wave scattering: applications -- Elastodynamic wave scattering: theory -- Elastodynamic wave scattering: Applications -- Scattering in Oceans -- Part 2: SCATTERING IN MICROSCOPIC PHYSICS AND CHEMICAL PHYSICS -- Introduction to direct potential scattering -- Introduction to Inverse Potential Scattering -- Visible and Near-visible Light Scattering -- Practical Aspects of Visible and Near-visible Light Scattering -- Nonlinear Light Scattering -- Atomic and Molecular Scattering: Introduction to Scattering in Chemical -- X-ray Scattering -- Neutron Scattering -- Electron Diffraction and Scattering -- Part 3: SCATTERING IN NUCLEAR PHYSICS -- Nuclear Physics -- Part 4: PARTICLE SCATTERING -- State of the Art of Peturbative Methods -- Scattering Through Electro-weak Interactions (the Fermi Scale) -- Scattering Through Strong Interactions (the Hadronic or QCD Scale) -- Part 5: SCATTERING AT EXTREME PHYSICAL SCALES -- Scattering at Extreme Physical Scales -- Part 6: SCATTERING IN MATHEMATICS AND NON-PHYSICAL SCIENCES -- Relations with Other Mathematical Theories -- Inverse Scattering Transform and Non-linear Partial Differenttial Equations -- Scattering of Mathematical Objects.




Electromagnetics in a Complex World


Book Description

Provides the state of the art of modelling, simulation and calculation methods for electromagnetic fields and waves and their application.




Advances in SAR: Sensors, Methodologies, and Applications


Book Description

This book is a printed edition of the Special Issue "Advances in SAR: Sensors, Methodologies, and Applications" that was published in Remote Sensing




Dynamics with Chaos and Fractals


Book Description

The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested.




Fractals in the Natural Sciences


Book Description

In the words of B. B. Mandelbrot's contribution to this important collection of original papers, fractal geometry is a "new geometric language, which is geared towards the study of diverse aspects of diverse objects, either mathematical or natural, that are not smooth, but rough and fragmented to the same degree at all scales." This book will be of interest to all physical and biological scientists studying these phenomena. It is based on a Royal Society discussion meeting held in 1988. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Fractal Frontiers: Fractals In The Natural And Applied Sciences


Book Description

Historically, science has developed by reducing complex situations to simple ones, analyzing the components and synthesizing the original situation. While this 'reductionist' approach has been extremely successful, there are phenomena of such complexity that one cannot simplify them without eliminating the problem itself. Recently, attention has turned to such problems in a wide variety of fields. This is in part due to the development of fractal geometry. Fractal geometry provides the mathematical tools for handling complexity. The present volume is a collection of papers that deal with the application of fractals in both traditional scientific disciplines and in applied fields. This volume shows the advance of our understanding of complex phenomena across a spectrum of disciplines. While these diverse fields work on very different problems, fractals provide a unifying formalism for approaching these problems.




Intelligent Computing for Sustainable Energy and Environment


Book Description

This book constitutes the refereed proceedings of the Second International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2012, held in Shanghai, China, in September 2012. The 60 full papers presented were carefully reviewed and selected from numerous submissions and present theories and methodologies as well as the emerging applications of intelligent computing in sustainable energy and environment.




Remote Sensing of Turbulence


Book Description

This book offers a unique multidisciplinary integration of the physics of turbulence and remote sensing technology. Remote Sensing of Turbulence provides a new vision on the research of turbulence and summarizes the current and future challenges of monitoring turbulence remotely. The book emphasizes sophisticated geophysical applications, detection, and recognition of complex turbulent flows in oceans and the atmosphere. Through several techniques based on microwave and optical/IR observations, the text explores the technological capabilities and tools for the detection of turbulence, their signatures, and variability. FEATURES Covers the fundamental aspects of turbulence problems with a broad geophysical scope for a wide audience of readers Provides a complete description of remote-sensing capabilities for observing turbulence in the earth’s environment Establishes the state-of-the-art remote-sensing techniques and methods of data analysis for turbulence detection Investigates and evaluates turbulence detection signatures, their properties, and variability Provides cutting-edge remote-sensing applications for space-based monitoring and forecasts of turbulence in oceans and the atmosphere This book is a great resource for applied physicists, the professional remote sensing community, ecologists, geophysicists, and earth scientists.




Modeling Backscattering Behavior of Vulnerable Road Users Based on High-Resolution Radar Measurements


Book Description

During the evolvement of autonomous driving technology, obtaining reliable 3-D environmental information is an indispensable task in approaching safe driving. The operational behavior of automotive radars can be precisely evaluated in a virtual test environment by modeling its surrounding, specifically vulnerable road users (VRUs). Such a realistic model can be generated based on the radar cross section (RCS) and Doppler signatures of a VRU. Therefore, this work proposes a high-resolution RCS measurement technique to determine the relevant scattering points of different VRUs.