Science in the Context of Application


Book Description

We increasingly view the world around us as a product of science and technology. Accordingly, we have begun to appreciate that science does not take its problems only from nature and then produces technological applications, but that the very problems of scientific research themselves are generated by science and technology. Simultaneously, problems like global warming, the toxicology of nanoparticles, or the use of renewable energies are constituted by many factors that interact with great complexity. Science in the context of application is challenged to gain new understanding and control of such complexity—it cannot seek shelter in the ivory tower or simply pursue its internal quest for understanding and gradual improvement of grand theories. Science in the Context of Application will identify, explore and assess these changes. Part I considers the "Changing Conditions of Scientific Research" and part II "Science, Values, and Society". Examples are drawn from pharmaceutical research, the information sciences, simulation modelling, nanotechnology, cancer research, the effects of commercialization, and many other fields. The book assembles papers from well-known European and American Science Studies scholars like Bernadette Bensaude-Vincent, Janet Kourany, Michael Mahoney, Margaret Morrison, Hans-Jörg Rheinberger, Arie Rip, Dan Sarewitz, Peter Weingart, and others. The individual chapters are written to address anyone who is concerned about the role of contemporary science in society, including scientists, philosophers, and policy makers.




Communicating Science Effectively


Book Description

Science and technology are embedded in virtually every aspect of modern life. As a result, people face an increasing need to integrate information from science with their personal values and other considerations as they make important life decisions about medical care, the safety of foods, what to do about climate change, and many other issues. Communicating science effectively, however, is a complex task and an acquired skill. Moreover, the approaches to communicating science that will be most effective for specific audiences and circumstances are not obvious. Fortunately, there is an expanding science base from diverse disciplines that can support science communicators in making these determinations. Communicating Science Effectively offers a research agenda for science communicators and researchers seeking to apply this research and fill gaps in knowledge about how to communicate effectively about science, focusing in particular on issues that are contentious in the public sphere. To inform this research agenda, this publication identifies important influences â€" psychological, economic, political, social, cultural, and media-related â€" on how science related to such issues is understood, perceived, and used.




Computational Context


Book Description

This volume addresses context from three comprehensive perspectives: first, its importance, the issues surrounding context, and its value in the laboratory and the field; second, the theory guiding the AI used to model its context; and third, its applications in the field (e.g., decision-making). This breadth poses a challenge. The book analyzes how the environment (context) influences human perception, cognition and action. While current books approach context narrowly, the major contribution of this book is to provide an in-depth review over a broad range of topics for a computational context no matter its breadth. The volume outlines numerous strategies and techniques from world-class scientists who have adapted their research to solve different problems with AI, in difficult environments and complex domains to address the many computational challenges posed by context. Context can be clear, uncertain or an illusion. Clear contexts: A father praising his child; a trip to the post office to buy stamps; a policewoman asking for identification. Uncertain contexts: A sneak attack; a surprise witness in a courtroom; a shout of "Fire! Fire!" Contexts as illusion: Humans fall prey to illusions that machines do not (Adelson’s checkerboard illusion versus a photometer). Determining context is not easy when disagreement exists, interpretations vary, or uncertainty reigns. Physicists like Einstein (relativity), Bekenstein (holographs) and Rovelli (universe) have written that reality is not what we commonly believe. Even outside of awareness, individuals act differently whether alone or in teams. Can computational context with AI adapt to clear and uncertain contexts, to change over time, and to individuals, machines or robots as well as to teams? If a program automatically "knows" the context that improves performance or decisions, does it matter whether context is clear, uncertain or illusory? Written and edited by world class leaders from across the field of autonomous systems research, this volume carefully considers the computational systems being constructed to determine context for individual agents or teams, the challenges they face, and the advances they expect for the science of context.




The Science and Application of Positive Psychology


Book Description

In pre-publication, the authors were listed as editors.




Science for Policy Handbook


Book Description

Science for Policy Handbook provides advice on how to bring science to the attention of policymakers. This resource is dedicated to researchers and research organizations aiming to achieve policy impacts. The book includes lessons learned along the way, advice on new skills, practices for individual researchers, elements necessary for institutional change, and knowledge areas and processes in which to invest. It puts co-creation at the centre of Science for Policy 2.0, a more integrated model of knowledge-policy relationship. Covers the vital area of science for policymaking Includes contributions from leading practitioners from the Joint Research Centre/European Commission Provides key skills based on the science-policy interface needed for effective evidence-informed policymaking Presents processes of knowledge production relevant for a more holistic science-policy relationship, along with the types of knowledge that are useful in policymaking




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Reproducibility and Replicability in Science


Book Description

One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.




Scientific Explanation And Methodology Of Science


Book Description

This volume contains the contributed papers of invitees to SEMS 2012 who have also given talks at the conference. The invitees are experts in philosophy of science and technology from Asia (besides China), Australia, Europe, Latin America, North America, as well as from within China.The papers in this volume represent the latest work of each researcher in his or her expertise; and as a result, they give a good representation of the cutting-edge researches in diverse areas in different parts of the world.




Enhancing Business Communications and Collaboration Through Data Science Applications


Book Description

Digital evolution has become increasingly present in our lives, whether on cellphones, computers, watches, or other appliances. As a result of the wide access we have to the digital world, the amount of data generated daily is vast. This density of information generated at every moment can be the insight needed for the success of an organization. Much is said about data-based decision-making to generate the best results. The new capabilities of data intelligence unleashed by the emergence of cloud computing and artificial intelligence make it one of the most promising areas of digital transformation change management. Enhancing Business Communications and Collaboration Through Data Science Applications provides relevant theoretical frameworks and the latest empirical research findings in the area. It is written for professionals who wish to improve their understanding of the strategic role of trust at different levels of the information and knowledge society. Covering topics such as data science, online business communication, and user-centered design, this premier reference source is an ideal resource for business managers and leaders, entrepreneurs, data scientists, data analysts, sociologists, students and educators of higher education, librarians, researchers, and academicians.




Introductory Mathematics Through Science Applications


Book Description

Covering the basic mathematics taught to first year students of science and engineering, this book starts with two or three examples setting the new techniques to be studied in the context of the scientific world. Topics covered include calculus, ordinary and partial differential equations and statistics.