Reproducibility and Replicability in Science


Book Description

One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.




Writing for Science and Engineering


Book Description

Resumen: Are you a post-graduate student in Engineering, Science or Technology who needs to know how to: Prepare abstracts, theses and journal papers Present your work orally Present a progress report to your funding body Would you like some guidance aimed specifically at your subject area? ... This is the book for you; a practical guide to all aspects of post-graduate documentation for Engineering, Science and Technology students, which will prove indispensable to readers. Writing for Science and Engineering will prove invaluable in all areas of research and writing due its clear, concise style. The practical advice contained within the pages alongside numerous examples to aid learning will make the preparation of documentation much easier for all students.




Successful Lab Reports


Book Description

Shows science students how to write a clear and to the point laboratory report.




Science Reports


Book Description




Science Reports


Book Description




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Communicating Science Effectively


Book Description

Science and technology are embedded in virtually every aspect of modern life. As a result, people face an increasing need to integrate information from science with their personal values and other considerations as they make important life decisions about medical care, the safety of foods, what to do about climate change, and many other issues. Communicating science effectively, however, is a complex task and an acquired skill. Moreover, the approaches to communicating science that will be most effective for specific audiences and circumstances are not obvious. Fortunately, there is an expanding science base from diverse disciplines that can support science communicators in making these determinations. Communicating Science Effectively offers a research agenda for science communicators and researchers seeking to apply this research and fill gaps in knowledge about how to communicate effectively about science, focusing in particular on issues that are contentious in the public sphere. To inform this research agenda, this publication identifies important influences â€" psychological, economic, political, social, cultural, and media-related â€" on how science related to such issues is understood, perceived, and used.







The Health Effects of Cannabis and Cannabinoids


Book Description

Significant changes have taken place in the policy landscape surrounding cannabis legalization, production, and use. During the past 20 years, 25 states and the District of Columbia have legalized cannabis and/or cannabidiol (a component of cannabis) for medical conditions or retail sales at the state level and 4 states have legalized both the medical and recreational use of cannabis. These landmark changes in policy have impacted cannabis use patterns and perceived levels of risk. However, despite this changing landscape, evidence regarding the short- and long-term health effects of cannabis use remains elusive. While a myriad of studies have examined cannabis use in all its various forms, often these research conclusions are not appropriately synthesized, translated for, or communicated to policy makers, health care providers, state health officials, or other stakeholders who have been charged with influencing and enacting policies, procedures, and laws related to cannabis use. Unlike other controlled substances such as alcohol or tobacco, no accepted standards for safe use or appropriate dose are available to help guide individuals as they make choices regarding the issues of if, when, where, and how to use cannabis safely and, in regard to therapeutic uses, effectively. Shifting public sentiment, conflicting and impeded scientific research, and legislative battles have fueled the debate about what, if any, harms or benefits can be attributed to the use of cannabis or its derivatives, and this lack of aggregated knowledge has broad public health implications. The Health Effects of Cannabis and Cannabinoids provides a comprehensive review of scientific evidence related to the health effects and potential therapeutic benefits of cannabis. This report provides a research agendaâ€"outlining gaps in current knowledge and opportunities for providing additional insight into these issuesâ€"that summarizes and prioritizes pressing research needs.




Review of the Draft Fourth National Climate Assessment


Book Description

Climate change poses many challenges that affect society and the natural world. With these challenges, however, come opportunities to respond. By taking steps to adapt to and mitigate climate change, the risks to society and the impacts of continued climate change can be lessened. The National Climate Assessment, coordinated by the U.S. Global Change Research Program, is a mandated report intended to inform response decisions. Required to be developed every four years, these reports provide the most comprehensive and up-to-date evaluation of climate change impacts available for the United States, making them a unique and important climate change document. The draft Fourth National Climate Assessment (NCA4) report reviewed here addresses a wide range of topics of high importance to the United States and society more broadly, extending from human health and community well-being, to the built environment, to businesses and economies, to ecosystems and natural resources. This report evaluates the draft NCA4 to determine if it meets the requirements of the federal mandate, whether it provides accurate information grounded in the scientific literature, and whether it effectively communicates climate science, impacts, and responses for general audiences including the public, decision makers, and other stakeholders.