The Sea Surface and Global Change


Book Description

Thorough review of sea-surface microlayer properties and role in global change.




Sea Surface Studies


Book Description

The oceans are vast with t,¥o-thirds of our planet being covered by a thick layer of water, the depth of which can be likened to flying above the earth's surface at an altitude of 30,000 feet (9,800 m). Good to play in, essential for life but deadly to breathe, water is important to all organisms on the planet, and the oceans form its major reservoir containing approximately 97 per cent of all freely available surface water. In spite of this obvious importance mankind has still much to learn about this ocean environment. Study of the oceans has grown enormously since the eighteenth- and nineteenth-century voyages of scientific discovery, expanding greatly in the period post 1945. One of the subjects that has blossomed in this period has been the study of the ocean's surface, and in particular the study of sea level and related sea-surface changes. Indeed this topic may even be termed 'popular', as reflected in the growing number of general geo morphology, physical geology and oceanography texts which now give space to the subject.




Sea Surface Sound


Book Description

In its relentless pursuit of further knowledge, science tends to compartmentalize. Over the years the pursuit of What might be called geophysical acoustics of the sea-surface has languished. This has occured even through there are well-developed and active research programs in underwater acoustics, ocean hydrodynamics, cloud and precipitation physics, and ice mechanics - to name a few - as well as a history of engineering expertise built on these scientific fields. It remained to create a convergence, a dialogue across disciplines, of mutual benefit. The central theme of the Lerici workshop, perhaps overly simplified, was 'What are the mechanisms causing ambient noise at the upper surface of the ocean?' What could hydrodynamicists contribute to a better understanding of breaking wave dynamics, bubble production, ocean wave dynamics, or near-surface turbulence for the benefit of the underwater acoustics community? What further insights could fluid dynamicists gain by including acoustic measurements in their repertoire of instrumentation? While every attendee will have his or her percep tions of details, it was universally agreed that a valuable step had been taken to bring together two mature disciplines and that significant co-operative studies would undoubtedly follow. The scope of the workshop was enlarged beyond its original intent to also include the question of ice-noise generation. The success of this decision can be seen in high quality of the presentations. the contribution of its disciples in the other workshop discussions and the heightened awareness and interest of we other novices.




The Near-Surface Layer of the Ocean


Book Description

Until the 1980s, a tacit agreement among many physical oceanographers was that nothing deserving attention could be found in the upper few meters of the ocean. The lack of adequete knowledge about the near-surface layer of the ocean was mainly due to the fact that the widely used oceanographic instruments (such as bathythermographs, CTDs, current meters, etc.) were practically useless in the upper few meters of the ocean. Interest in the ne- surface layer of the ocean rapidly increased along with the development of remote sensing techniques. The interpretation of ocean surface signals sensed from satellites demanded thorough knowledge of upper ocean processes and their connection to the ocean interior. Despite its accessibility to the investigator, the near-surface layer of the ocean is not a simple subject of experimental study. Random, sometimes huge, vertical motions of the ocean surface due to surface waves are a serious complication for collecting quality data close to the ocean surface. The supposedly minor problem of avoiding disturbances from ships’ wakes has frustrated several generations of oceanographers attempting to take reliable data from the upper few meters of the ocean. Important practical applications nevertheless demanded action, and as a result several pioneering works in the 1970s and 1980s laid the foundation for the new subject of oceanography – the near-surface layer of the ocean.




Marine Research


Book Description







Algal Photosynthesis


Book Description

The algae are a diverse group of organisms with forms that range in size from less than a micron in diameter to over ten meters in length. Small {laquo} 1 JLm diam) unicellular forms dominate the open waters of the oceans and large lakes. Large multicellular forms often form a large component of the autotrophic biomass of shallow waters at the periphery of lakes and oceans but have also been found on seamounts in clear open ocean waters at depths up to several hundred meters (Littler and Littler, 1985). Phytoplankton in the sea probably account for more than 50% of global photosynthesis, although there is considerable uncertainty about this estimate. In addition, many symbiotic associations between unicellu lar algae and heterotrophic or autotrophic organisms have been identi fied, and algae can be found in a diverse range of terrestrial environ ments, ranging from polar to desert regions. The most important common biochemical attribute that unites the algae is their ability to split water, producing molecular oxygen during photosynthesis and concomi tantly assimilating carbon dioxide. This attribute is shared with the terres trial plants, cyanobacteria and chloroxybacteria. Although vascular plants are excluded from this review, we employ a broad definition of algae that includes the photosynthetic, oxygenic procaryotes. Measurements of gas exchange are fundamental to most biochemical, physiological and ecological investigations of the algae.




Bubble and Foam Chemistry


Book Description

Combining academic and industrial viewpoints, this is the definitive stand-alone resource for researchers, students and industrialists. With the latest on foam research, test methods and real-world applications, it provides straightforward answers to why foaming occurs, how it can be avoided, and how different degrees of antifoaming can be achieved.




Ocean Surface Waves


Book Description

This book is intended as a handbook for professionals and researchers in the areas of Physical Oceanography, Ocean and Coastal Engineering and as a text for graduate students in these fields. It presents a comprehensive study on surface ocean waves induced by wind, including basic mathematical principles, physical description of the observed phenomena, practical forecasting techniques of various wave parameters and applications in ocean and coastal engineering, all from the probabilistic and spectral points of view. The book commences with a description of mechanisms of surface wave generation by wind and its modern modeling techniques. The stochastic and probabilistic terminology is introduced and the basic statistical and spectral properties of ocean waves are developed and discussed in detail. The bulk of material deals with the prediction techniques for waves in deep and coastal waters for simple and complex ocean basins and complex bathymetry. The various prediction methods, currently used in oceanography and ocean engineering, are described and the examples of practical calculations illustrate the basic text. An appendix provides a description of the modern methods of wave measurement, including the remote sensing techniques. Also the wave simulation methods and random data analysis techniques are discussed. In the book a lot of discoveries of the Russian and East European scientists, largely unknown in the Western literature due to the language barrier, are referred to.




Sea-Level Rise for the Coasts of California, Oregon, and Washington


Book Description

Tide gauges show that global sea level has risen about 7 inches during the 20th century, and recent satellite data show that the rate of sea-level rise is accelerating. As Earth warms, sea levels are rising mainly because ocean water expands as it warms; and water from melting glaciers and ice sheets is flowing into the ocean. Sea-level rise poses enormous risks to the valuable infrastructure, development, and wetlands that line much of the 1,600 mile shoreline of California, Oregon, and Washington. As those states seek to incorporate projections of sea-level rise into coastal planning, they asked the National Research Council to make independent projections of sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account regional factors that affect sea level. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future explains that sea level along the U.S. west coast is affected by a number of factors. These include: climate patterns such as the El Niño, effects from the melting of modern and ancient ice sheets, and geologic processes, such as plate tectonics. Regional projections for California, Oregon, and Washington show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections. However, projections are lower north of Cape Mendocino because the land is being pushed upward as the ocean plate moves under the continental plate along the Cascadia Subduction Zone. However, an earthquake magnitude 8 or larger, which occurs in the region every few hundred to 1,000 years, would cause the land to drop and sea level to suddenly rise.