Seed Development and Germination


Book Description

This text is intended for plant physiologists, molecular biologists, biochemists, biotechnologists, geneticists, horticulturalists, agromnomists and botanists, and upper-level undergraduate and graduate students in these disciplines. It integrates advances in the diverse and rapidly-expanding field of seed science, from ecological and demographic aspects of seed production, dispersal and germination, to the molecular biology of seed development. The book offers a broad, multidisciplinary approach that covers both theoretical and applied knowledge.




Annual Plant Reviews, Seed Development, Dormancy and Germination


Book Description

The formation, dispersal and germination of seeds are crucial stages in the life cycles of gymnosperm and angiosperm plants. The unique properties of seeds, particularly their tolerance to desiccation, their mobility, and their ability to schedule their germination to coincide with times when environmental conditions are favorable to their survival as seedlings, have no doubt contributed significantly to the success of seed-bearing plants. Humans are also dependent upon seeds, which constitute the majority of the world’s staple foods (e.g., cereals and legumes). Seeds are an excellent system for studying fundamental developmental processes in plant biology, as they develop from a single fertilized zygote into an embryo and endosperm, in association with the surrounding maternal tissues. As genetic and molecular approaches have become increasingly powerful tools for biological research, seeds have become an attractive system in which to study a wide array of metabolic processes and regulatory systems. Seed Development, Dormancy and Germination provides a comprehensive overview of seed biology from the point of view of the developmental and regulatory processes that are involved in the transition from a developing seed through dormancy and into germination and seedling growth. It examines the complexity of the environmental, physiological, molecular and genetic interactions that occur through the life cycle of seeds, along with the concepts and approaches used to analyze seed dormancy and germination behavior. It also identifies the current challenges and remaining questions for future research. The book is directed at plant developmental biologists, geneticists, plant breeders, seed biologists and graduate students.




Seeds


Book Description

This updated and much revised third edition of Seeds: Physiology of Development, Germination and Dormancy provides a thorough overview of seed biology and incorporates much of the progress that has been made during the past fifteen years. With an emphasis on placing information in the context of the seed, this new edition includes recent advances in the areas of molecular biology of development and germination, as well as fresh insights into dormancy, ecophysiology, desiccation tolerance, and longevity. Authored by preeminent authorities in the field, this book is an invaluable resource for researchers, teachers, and students interested in the diverse aspects of seed biology.




Seeds


Book Description

In response to enormous recent advances, particularly in molecular biology, the authors have revised their warmly received work. This new edition includes updates on seed development, gene expression, dormancy, and other subjects. It will serve as the field's standard textbook and reference source for many years to come.




Seeds


Book Description

In response to enormous recent advances, particularly in molecular biology, the authors have revised their warmly received work. This new edition includes updates on seed development, gene expression, dormancy, and other subjects. It will serve as the field's standard textbook and reference source for many years to come.




The Germination of Seeds


Book Description

The Germination of Seeds, Third Edition discusses topics concerning seed germination. The book is comprised of seven chapters that tackle subjects relating to the field of germination. Chapter 1 discusses the structure of seeds and seedlings, while Chapter 2 covers the chemical composition of seeds. Chapter 3 tackles the factors affecting germination, and Chapter 4 deals with dormancy, germination inhibition, and stimulation. Chapter 5 talks about the metabolism of germinating seeds, and Chapter 6 discusses the effect of germination inhibitors and stimulators on metabolism and their possible regulatory role. Chapter 7 covers the ecology of germination. The book will be of great interest to botanists, who are particularly concerned with plant physiology.




Seed Biology


Book Description

Seed Biology, Volume I: Importance, Development, and Germination is a part of a three-volume treatise, which aims to bring together a large body of important information on seed biology. Organized into six chapters, this book begins with a discussion on the importance and characteristics of seeds. Separate chapters follow that discuss the development of gymnosperm and angiosperm seeds, as well as the anatomical mechanisms of seed dispersal. Other chapters focus on the morphogenetic events involved in the germination and the scientific basis for the concept of physiological predetermination or seedling vigor, including the potential application of this concept in agriculture, forestry, and management of natural resources. This work will be useful to various groups of research biologists and teachers, including plant anatomists, pathologists, and physiologists as well as agronomists, biochemists, ecologists, entomologists, foresters, and horticulturists.




Plant Hormones


Book Description

Plant hormones play a crucial role in controlling the way in which plants grow and develop. While metabolism provides the power and building blocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate them to produce the form that we recognize as a plant. This book is a description of these natural chemicals: how they are synthesized and metabolized, how they act at both the organismal and molecular levels, how we measure them, a description of some of the roles they play in regulating plant growth and development, and the prospects for the genetic engineering of hormone levels or responses in crop plants. This is an updated revision of the third edition of the highly acclaimed text. Thirty-three chapters, including two totally new chapters plus four chapter updates, written by a group of fifty-five international experts, provide the latest information on Plant Hormones, particularly with reference to such new topics as signal transduction, brassinosteroids, responses to disease, and expansins. The book is not a conference proceedings but a selected collection of carefully integrated and illustrated reviews describing our knowledge of plant hormones and the experimental work that is the foundation of this information. The Revised 3rd Edition adds important information that has emerged since the original publication of the 3rd edition. This includes information on the receptors for auxin, gibberellin, abscisic acid and jasmonates, in addition to new chapters on strigolactones, the branching hormones, and florigen, the flowering hormone.




From Seed Germination to Young Plants


Book Description

Includes bibliographical references and indexes.




Seed Dormancy and Germination


Book Description

The germination of seeds is a magical event, in which a pinch of dust-like material may give rise to all the power and the beauty of the growing plant. The mechanisms of seed dormancy, of the breaking of seed dormancy and of germination itself continue to remain shrouded in mystery, despite the best efforts of plant scientists. Perhaps we are getting there, but very slowly. This book considers germination and dormancy from the point of view of plant physiology. Plant physiologists attempt to understand the relation ship between plant form and function and to explain, in physical and chemical terms, plant growth and development. The place of germination and dormancy in plant ecophysiology is taken into account with attempts to understand the seed in its 'environment, whether the environment be natural, semi-natural or wholly artificial. In due course plant scientists hope to develop a precise understanding of germination and dormancy in cellular and molecular terms, and therefore there is some biochemistry in this book. Biochemists who wish to learn something about seeds should find this book useful.