Geothermal Energy Update


Book Description







Proceedings


Book Description










Passive Seismic Monitoring of Induced Seismicity


Book Description

The past few decades have witnessed remarkable growth in the application of passive seismic monitoring to address a range of problems in geoscience and engineering, from large-scale tectonic studies to environmental investigations. Passive seismic methods are increasingly being used for surveillance of massive, multi-stage hydraulic fracturing and development of enhanced geothermal systems. The theoretical framework and techniques used in this emerging area draw on various established fields, such as earthquake seismology, exploration geophysics and rock mechanics. Based on university and industry courses developed by the author, this book reviews all the relevant research and technology to provide an introduction to the principles and applications of passive seismic monitoring. It integrates up-to-date case studies and interactive online exercises, making it a comprehensive and accessible resource for advanced students and researchers in geophysics and engineering, as well as industry practitioners.




Enhanced Geothermal Systems (EGS)


Book Description

Peter Meisen, Past President, Global Energy Network Institute, asked in 1997, “What if there was an existing, viable technology, that when developed to its highest potential could increase everyone’s standard of living, cut fossil fuel demand and the resultant pollution?” After 23 years of sustained effort by the global scientific community, this is becoming a reality. The technology to extract heat from granite has been revolutionized in the last few years. The classical method of creating fracture networks by hydrofracturing is being replaced by a closed-loop method where fluids are not in contact with the hot granite. Supercritical CO2 is replacing water as a circulating fluid. Certainly, the future energy road is going to be led by highly radiogenic granites. While hydrothermal sources are site-specific and have their limitations, EGS can be initiated anywhere on earth. EGS is removing all such obstacles and, in the future, will provide uninterrupted electricity for all. Energy-deficient countries can have surplus electricity; water-stressed countries can have a perennial freshwater supply; and countries can become food-secure and rise above poverty levels. Countries need not depend on energy imports and can independently evolve into carbon neutral or low carbon societies. The contributions made by experts will help researchers and investors to close the energy demand and supply gap in the very near future by tapping the unlimited energy of the Earth. Opportunities available for investors in Turkey are well documented with field, geophysical, and geochemical data and information on the energy generating capacity of the granite intrusive spread over a cumulative area of 6,910 km2 in western Anatolia. With the signing of the Global Geothermal Alliance (GGA) by several countries during the December 2015 CoP 21 (Conference of Parties) summit in Paris, countries are obliged to reduce CO2 emissions by increasing the footprint of renewable energy in the primary source mix. Information provided in this book will lead the way to establishing a clean energy future for millions of people for sustainable development and help to mitigate crises arising due to food, water, and energy shortage issues. Academic and research institutes will benefit to a large extent from the expertise of the top contributors in this book. This information provided in this book will help to lay the foundation for super-hot EGS research in future.