Bridge Maintenance, Safety, Management and Life-Cycle Optimization


Book Description

Bridge Maintenance, Safety, Management and Life-Cycle Optimization contains the lectures and papers presented at IABMAS 2010, the Fifth International Conference of the International Association for Bridge Maintenance and Safety (IABMAS), held in Philadelphia, Pennsylvania, USA from July 11 through 15, 2010.All major aspects of bridge maintenance, s




Seismic Assessment and Retrofit of Reinforced Concrete Columns


Book Description

Reinforced concrete columns play a very important role in structural performance. As such, it is essential to apply a suitable analytical tool to estimate their structural behaviour considering all failure mechanisms such as axial, shear, and flexural failures. This book highlights the development of a fiber beam-column element accounting for shear effects and the effect of tension stiffening through reinforcement-to-concrete bond, along with the employment of suitable constitutive material laws.




Seismic Design and Retrofit of Bridges


Book Description

Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges







Seismic Assessment and Retrofit of Reinforced Concrete Columns


Book Description

Reinforced concrete columns play a very important role in structural performance. As such, it is essential to apply a suitable analytical tool to estimate their structural behaviour considering all failure mechanisms such as axial, shear, and flexural failures. This book highlights the development of a fiber beam-column element accounting for shear effects and the effect of tension stiffening through reinforcement-to-concrete bond, along with the employment of suitable constitutive material laws.




Seismic Retrofit of Existing Reinforced Concrete Buildings


Book Description

Seismic Retrofit of Existing Reinforced Concrete Buildings Understand the complexities and challenges of retrofitting building infrastructure Across the world, buildings are gradually becoming structurally unsound. Many were constructed before seismic load capacity was a mandatory component of building standards, and were often built with low-quality materials or using unsafe construction practices. Many more are simply aging, with materials degrading, and steel corroding. As a result, efforts are ongoing to retrofit existing structures, and to develop new techniques for assessing and enhancing seismic load capacity in order to create a safer building infrastructure worldwide. Seismic Retrofit of Existing Reinforced Concrete Buildings provides a thorough book-length discussion of these techniques and their applications. Balancing theory and practice, the book provides engineers with a broad base of knowledge from which to approach real-world seismic assessments and retrofitting projects. It incorporates knowledge and experience frequently omitted from the building design process for a fuller account of this critical engineering subfield. Seismic Retrofit of Existing Reinforced Concrete Buildings readers will also find: Detailed treatment of each available strengthening technique, complete with advantages and disadvantages In-depth guidelines to select a specific technique for a given building type and/or engineering scenario Step-by-step guidance through the assessment/retrofitting process Seismic Retrofit of Existing Reinforced Concrete Buildings is an ideal reference for civil and structural engineering professionals and advanced students, particularly those working in seismically active areas.




Guide Specifications for Seismic Isolation Design


Book Description

This edition is based on the work of NCHRP project 20-7, task 262 and updates the 2nd (1999) edition -- P. ix.




Seismic Assessment and Retrofit of Reinforced Concrete Buildings


Book Description

In most parts of the developed world, the building stock and the civil infrastructure are ageing and in constant need of maintenance, repair and upgrading. Moreover, in the light of our current knowledge and of modern codes, the majority of buildings stock and other types of structures in many parts of the world are substandard and deficient. This is especially so in earthquake-prone regions, as, even there, seismic design of structures is relatively recent. In those regions the major part of the seismic threat to human life and property comes from old buildings. Due to the infrastructure's increasing decay, frequently combined with the need for structural upgrading to meet more stringent design requirements (especially against seismic loads), structural retrofitting is becoming more and more important and receives today considerable emphasis throughout the world. In response to this need, a major part of the fib Model Code 2005, currently under development, is being devoted to structural conservation and maintenance. More importantly, in recognition of the importance of the seismic threat arising from existing substandard buildings, the first standards for structural upgrading to be promoted by the international engineering community and by regulatory authorities alike are for seismic rehabilitation of buildings. This is the case, for example, of Part 3: Strengthening and Repair of Buildings of Eurocode 8 (i. e. of the draft European Standard for earthquake-resistant design), and which is the only one among the current (2003) set of 58 Eurocodes attempting to address the problem of structural upgrading. It is also the case of the recent (2001) ASCE draft standard on Seismic evaluation of existing buildings and of the 1996 Law for promotion of seismic strengthening of existing reinforced concrete structures in Japan. As noted in Chapter 1 of this Bulletin, fib - as CEB and FIP did before - has placed considerable emphasis on assessment and rehabilitation of existing structures. The present Bulletin is a culmination of this effort in the special but very important field of seismic assessment and rehabilitation. It has been elaborated over a period of 4 years by Task Group 7.1 Assessment and retrofit of existing structures of fib Commission 7 Seismic design, a truly international team of experts, representing the expertise and experience of all the important seismic regions of the world. In the course of its work the team had six plenary two-day meetings: in January 1999 in Pavia, Italy; in August 1999 in Raleigh, North Carolina; in February 2000 in Queenstown, New Zealand; in July 2000 in Patras, Greece; in March 2001 in Lausanne, Switzerland; and in August 2001 in Seattle, Washington. In October 2002 the final draft of the Bulletin was presented to public during the 1st fib Congress in Osaka. It was also there that it was approved by fib Commission 7 Seismic Design. The contents is structured into main chapters as follows: 1 Introduction - 2 Performance objectives and system considerations - 3 Review of seismic assessment procedures - 4 Strength and deformation capacity of non-seismically detailed components - 5 Seismic retrofitting techniques - 6 Probabilistic concepts and methods - 7 Case studies