Self-Organizing Maps


Book Description

The book we have at hand is the fourth monograph I wrote for Springer Verlag. The previous one named "Self-Organization and Associative Mem ory" (Springer Series in Information Sciences, Volume 8) came out in 1984. Since then the self-organizing neural-network algorithms called SOM and LVQ have become very popular, as can be seen from the many works re viewed in Chap. 9. The new results obtained in the past ten years or so have warranted a new monograph. Over these years I have also answered lots of questions; they have influenced the contents of the present book. I hope it would be of some interest and help to the readers if I now first very briefly describe the various phases that led to my present SOM research, and the reasons underlying each new step. I became interested in neural networks around 1960, but could not in terrupt my graduate studies in physics. After I was appointed Professor of Electronics in 1965, it still took some years to organize teaching at the uni versity. In 1968 - 69 I was on leave at the University of Washington, and D. Gabor had just published his convolution-correlation model of autoasso ciative memory. I noticed immediately that there was something not quite right about it: the capacity was very poor and the inherent noise and crosstalk were intolerable. In 1970 I therefore sugge~ted the auto associative correlation matrix memory model, at the same time as J.A. Anderson and K. Nakano.




Self-organizing Map Formation


Book Description

This book provides an overview of self-organizing map formation, including recent developments. Self-organizing maps form a branch of unsupervised learning, which is the study of what can be determined about the statistical properties of input data without explicit feedback from a teacher. The articles are drawn from the journal Neural Computation.The book consists of five sections. The first section looks at attempts to model the organization of cortical maps and at the theory and applications of the related artificial neural network algorithms. The second section analyzes topographic maps and their formation via objective functions. The third section discusses cortical maps of stimulus features. The fourth section discusses self-organizing maps for unsupervised data analysis. The fifth section discusses extensions of self-organizing maps, including two surprising applications of mapping algorithms to standard computer science problems: combinatorial optimization and sorting. Contributors J. J. Atick, H. G. Barrow, H. U. Bauer, C. M. Bishop, H. J. Bray, J. Bruske, J. M. L. Budd, M. Budinich, V. Cherkassky, J. Cowan, R. Durbin, E. Erwin, G. J. Goodhill, T. Graepel, D. Grier, S. Kaski, T. Kohonen, H. Lappalainen, Z. Li, J. Lin, R. Linsker, S. P. Luttrell, D. J. C. MacKay, K. D. Miller, G. Mitchison, F. Mulier, K. Obermayer, C. Piepenbrock, H. Ritter, K. Schulten, T. J. Sejnowski, S. Smirnakis, G. Sommer, M. Svensen, R. Szeliski, A. Utsugi, C. K. I. Williams, L. Wiskott, L. Xu, A. Yuille, J. Zhang




Adaptive and Natural Computing Algorithms


Book Description

The two-volume set LNCS 6593 and 6594 constitutes the refereed proceedings of the 10th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2010, held in Ljubljana, Slovenia, in April 2010. The 83 revised full papers presented were carefully reviewed and selected from a total of 144 submissions. The first volume includes 42 papers and a plenary lecture and is organized in topical sections on neural networks and evolutionary computation.




Computational Intelligence Systems in Industrial Engineering


Book Description

Industrial engineering is a branch of engineering dealing with the optimization of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of production and service systems. Computational Intelligence Systems find a wide application area in industrial engineering: neural networks in forecasting, fuzzy sets in capital budgeting, ant colony optimization in scheduling, Simulated Annealing in optimization, etc. This book will include most of the application areas of industrial engineering through these computational intelligence systems. In the literature, there is no book including many real and practical applications of Computational Intelligence Systems from the point of view of Industrial Engineering. Every chapter will include explanatory and didactic applications. It is aimed that the book will be a main source for MSc and PhD students.




Handbook of Natural Computing


Book Description

Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.




Self-Organising Maps


Book Description

Self-Organising Maps: Applications in GI Science brings together the latest geographical research where extensive use has been made of the SOM algorithm, and provides readers with a snapshot of these tools that can then be adapted and used in new research projects. The book begins with an overview of the SOM technique and the most commonly used (and freely available) software; it is then sectioned to look at the different uses of the technique, namely clustering, data mining and cartography, from a range of application-areas in the biophysical and socio-economic environments. Only book that takes SOM algorithm to the GIS and Geography research communities The Editors draw together expert contributors from the UK, Europe, USA, New Zealand, and South Africa Covers a range of techniques in clustering, data mining cartography, all featuring an appropriate case study




Applications of Self-Organizing Maps


Book Description

The self-organizing map, first described by the Finnish scientist Teuvo Kohonen, can by applied to a wide range of fields. This book is about such applications, i.e. how the original self-organizing map as well as variants and extensions of it can be applied in different fields. In fourteen chapters, a wide range of such applications is discussed. To name a few, these applications include the analysis of financial stability, the fault diagnosis of plants, the creation of well-composed heterogeneous teams and the application of the self-organizing map to the atmospheric sciences.




Progress in Pattern Recognition, Image Analysis and Applications


Book Description

First of all, we want to congratulate two new research communities from M- ico and Brazil that have recently joined the Iberoamerican community and the International Association for Pattern Recognition. We believe that the series of congresses that started as the “Taller Iberoamericano de Reconocimiento de Patrones (TIARP)”, and later became the “Iberoamerican Congress on Pattern Recognition (CIARP)”, has contributed to these groupconsolidatione?orts. We hope that in the near future all the Iberoamerican countries will have their own groups and associations to promote our areas of interest; and that these congresses will serve as the forum for scienti?c research exchange, sharing of - pertise and new knowledge, and establishing contacts that improve cooperation between research groups in pattern recognition and related areas. CIARP 2004 (9th Iberoamerican Congress on Pattern Recognition) was the ninthinaseriesofpioneeringcongressesonpatternrecognitionintheIberoam- ican community. As in the previous year, CIARP 2004 also included worldwide participation. It took place in Puebla, Mexico. The aim of the congress was to promote and disseminate ongoing research and mathematical methods for pattern recognition, image analysis, and applications in such diverse areas as computer vision, robotics, industry, health, entertainment, space exploration, telecommunications, data mining, document analysis,and natural languagep- cessing and recognition, to name a few.




Advances in Self-Organizing Maps


Book Description

This book constitutes the refereed proceedings of the 8th International Workshop on Self-Organizing Maps, WSOM 2011, held in Espoo, Finland, in June 2011. The 36 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on plenaries; financial and societal applications; theory and methodology; applications of data mining and analysis; language processing and document analysis; and visualization and image processing.




Artificial Intelligence and Soft Computing


Book Description

The two-volume set LNAI 8467 and LNAI 8468 constitutes the refereed proceedings of the 13th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2014, held in Zakopane, Poland in June 2014. The 139 revised full papers presented in the volumes, were carefully reviewed and selected from 331 submissions. The 69 papers included in the first volume are focused on the following topical sections: Neural Networks and Their Applications, Fuzzy Systems and Their Applications, Evolutionary Algorithms and Their Applications, Classification and Estimation, Computer Vision, Image and Speech Analysis and Special Session 3: Intelligent Methods in Databases. The 71 papers in the second volume are organized in the following subjects: Data Mining, Bioinformatics, Biometrics and Medical Applications, Agent Systems, Robotics and Control, Artificial Intelligence in Modeling and Simulation, Various Problems of Artificial Intelligence, Special Session 2: Machine Learning for Visual Information Analysis and Security, Special Session 1: Applications and Properties of Fuzzy Reasoning and Calculus and Clustering.