Semantic Hyper/Multimedia Adaptation


Book Description

Nowadays, more and more users are witnessing the impact of Hypermedia/Multimedia as well as the penetration of social applications in their life. Parallel to the evolution of the Internet and Web, several Hypermedia/Multimedia schemes and technologies bring semantic-based intelligent, personalized and adaptive services to the end users. More and more techniques are applied in media systems in order to be user/group-centric, adapting to different content and context features of a single or a community user. In respect to all the above, researchers need to explore and study the plethora of challenges that emergent personalisation and adaptation technologies bring to the new era. This edited volume aims to increase the awareness of researchers in this area. All contributions provide an in-depth investigation on research and deployment issues, regarding already introduced schemes and applications in Semantic Hyper/Multimedia and Social Media Adaptation. Moreover, the authors provide survey-based articles, so as potential readers can use it for catching up the recent trends and applications in respect to the relevant literature. Finally, the authors discuss and present their approach in the respective field or problem addressed.




Advances in Semantic Media Adaptation and Personalization


Book Description

Realizing the growing importance of semantic adaptation and personalization of media, the editors of this book brought together leading researchers and practitioners of the field to discuss the state-of-the-art, and explore emerging exciting developments. This volume comprises extended versions of selected papers presented at the 1st International Workshop on Semantic Media Adaptation and Personalization (SMAP 2006), which took place in Athens in December 2006.




Advances in Semantic Media Adaptation and Personalization, Volume 2


Book Description

The emergence of content- and context-aware search engines, which not only personalize searching and delivery but also the content, has caused the emergence of new infrastructures capable of end-to-end ubiquitous transmission of personalized multimedia content to any device on any network at any time. Personalizing and adapting content requires pro




Semantic Multimedia Analysis and Processing


Book Description

Broad in scope, Semantic Multimedia Analysis and Processing provides a complete reference of techniques, algorithms, and solutions for the design and the implementation of contemporary multimedia systems. Offering a balanced, global look at the latest advances in semantic indexing, retrieval, analysis, and processing of multimedia, the book features the contributions of renowned researchers from around the world. Its contents are based on four fundamental thematic pillars: 1) information and content retrieval, 2) semantic knowledge exploitation paradigms, 3) multimedia personalization, and 4) human-computer affective multimedia interaction. Its 15 chapters cover key topics such as content creation, annotation and modeling for the semantic web, multimedia content understanding, and efficiency and scalability. Fostering a deeper understanding of a popular area of research, the text: Describes state-of-the-art schemes and applications Supplies authoritative guidance on research and deployment issues Presents novel methods and applications in an informative and reproducible way Contains numerous examples, illustrations, and tables summarizing results from quantitative studies Considers ongoing trends and designates future challenges and research perspectives Includes bibliographic links for further exploration Uses both SI and US units Ideal for engineers and scientists specializing in the design of multimedia systems, software applications, and image/video analysis and processing technologies, Semantic Multimedia Analysis and Processing aids researchers, practitioners, and developers in finding innovative solutions to existing problems, opening up new avenues of research in uncharted waters.




Multimedia Information Retrieval


Book Description

Novel processing and searching tools for the management of new multimedia documents have developed. Multimedia Information Retrieval (MIR) is an organic system made up of Text Retrieval (TR); Visual Retrieval (VR); Video Retrieval (VDR); and Audio Retrieval (AR) systems. So that each type of digital document may be analysed and searched by the elements of language appropriate to its nature, search criteria must be extended. Such an approach is known as the Content Based Information Retrieval (CBIR), and is the core of MIR. This novel content-based concept of information handling needs to be integrated with more traditional semantics. Multimedia Information Retrieval focuses on the tools of processing and searching applicable to the content-based management of new multimedia documents. Translated from Italian by Giles Smith, the book is divided into two parts. Part one discusses MIR and related theories, and puts forward new methodologies; part two reviews various experimental and operating MIR systems, and presents technical and practical conclusions. - Gives a complete, organic picture of MIR and CBIR - Proposes a novel conceptualisation around the ideas of Information Retrieval (IR) and digital document management in the context of Library and Information Science (LIS) - Relevant for both library and information science and information technology specialists




Semantic Technologies for Intelligent Industry 4.0 Applications


Book Description

As the world enters the era of big data, there is a serious need to give a semantic perspective to the data in order to find unseen patterns, derive meaningful information, and make intelligent decisions. Semantic technologies offer the richest machine-interpretable (rather than just machine-processable) and explicit semantics that are being extensively used in various domains and industries. These technologies reduce the problem of large semantic loss in the process of modelling knowledge, and provide sharable, reusable knowledge,and a common understanding of the knowledge. As a result, the interoperability and interconnectivity of the model make it priceless for addressing the issues of querying data. These technologies work with the concepts and relations that are very lose to the working of the human brain. They provide a semantic representation of any data format: unstructured or semi-structured. As a consequence, data becomes real-world entity rather than a string of characters. For these reasons, semantic technologies are highly valuable tools to simplify the existing problems of the industry leading to new opportunities. However, there are some challenges that need to be addressed to make industrial applications and machines smarter. This book aims to provide a roadmap for semantic technologies and highlights the role of these technologies in industry. The book also explores the present and future prospects of these semantic technologies along with providing answers to various questions like: Are semantic technologies useful for the next era (industry 4.0)? Why are semantic technologies so popular and extensively used in the industry? Can semantic technologies make intelligent industrial applications? Which type of problem requires the immediate attention of researchers? Why are semantic technologies very helpful in people’s future lives? This book will potentially serve as an important guide towards the latest industrial applications of semantic technologies for the upcoming generation, and thus becomes a unique resource for scholars, researchers, professionals and practitioners in the field.




Recommender Systems for Technology Enhanced Learning


Book Description

As an area, Technology Enhanced Learning (TEL) aims to design, develop and test socio-technical innovations that will support and enhance learning practices of individuals and organizations. Information retrieval is a pivotal activity in TEL and the deployment of recommender systems has attracted increased interest during the past years. Recommendation methods, techniques and systems open an interesting new approach to facilitate and support learning and teaching. The goal is to develop, deploy and evaluate systems that provide learners and teachers with meaningful guidance in order to help identify suitable learning resources from a potentially overwhelming variety of choices. Contributions address the following topics: i) user and item data that can be used to support learning recommendation systems and scenarios, ii) innovative methods and techniques for recommendation purposes in educational settings and iii) examples of educational platforms and tools where recommendations are incorporated.




Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the 10th International Conference on Adaptive Multimedia Retrieval, AMR 2012, held in Copenhagen, Denmark, in October 2012. The 17 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers cover topics of state of the art contributions, features and classification, location context, language and semantics, music retrieval, and adaption and HCI.




Services for Connecting and Integrating Big Numbers of Linked Datasets


Book Description

Linked Data is a method of publishing structured data to facilitate sharing, linking, searching and re-use. Many such datasets have already been published, but although their number and size continues to increase, the main objectives of linking and integration have not yet been fully realized, and even seemingly simple tasks, like finding all the available information for an entity, are still challenging. This book, Services for Connecting and Integrating Big Numbers of Linked Datasets, is the 50th volume in the series ‘Studies on the Semantic Web’. The book analyzes the research work done in the area of linked data integration, and focuses on methods that can be used at large scale. It then proposes indexes and algorithms for tackling some of the challenges, such as, methods for performing cross-dataset identity reasoning, finding all the available information for an entity, methods for ordering content-based dataset discovery, and others. The author demonstrates how content-based dataset discovery can be reduced to solving optimization problems, and techniques are proposed for solving these efficiently while taking the contents of the datasets into consideration. To order them in real time, the proposed indexes and algorithms have been implemented in a suite of services called LODsyndesis, in turn enabling the implementation of other high level services, such as techniques for knowledge graph embeddings, and services for data enrichment which can be exploited for machine-learning tasks, and which also improve the prediction of machine-learning problems.




Modelling Web-based Learning Ecosystems for Aggregation and Reuse


Book Description

In der E-Learning-Domäne bilden sowohl die Lernressourcen, Lehrende und Lernende als auch die stattfindenden Lernprozesse in ihrer Gesamtheit Lernökosysteme. Diese Dissertation untersucht die Modellierung von Lernökosystemen zur Unterstützung ihrer Aggregation und Wiederverwendung. Zur Erreichung dieses Ziels müssen Modelle von Lernökosystemen die Aggregierbarkeit, Austauschbarkeit, Interoperabilität und granulare Wiederverwendbarkeit ihrer Daten unterstützen. Auf Basis durchgeführter Nutzerstudien werden Konzepte digitaler Modelle von Lernökosystemen, sogenannte LOOCs (Linked Open Online Courses), entwickelt. Dabei werden insbesondere Technologien des Semantic Webs sowie Linked-Data-Konzepte betrachtet. Die entwickelten ontologischen Modelle bilden die Basis für mehrere E-Learning-Applikationen, welche die Tragfähigkeit der Konzepte sowie eine hohe Nutzerakzeptanz zeigen. Ferner wird ein formales Interpretermodell für CSCL (Computer-Supported Collaborative Learning) Scripts zur Beschreibung von Lernprozessen, welches mit Hilfe von Abstract State Machines spezifiziert wurde, vorgestellt. In the e-learning domain, the learning resources, teachers and learners and the active learning processes in their entirety construct the learning ecosystems. This thesis examines the modelling of learning ecosystems to support their aggregation and reuse. To achieve this goal, learning ecosystem models must support aggregation, compatibility, interoperability and granular re-usability of their data. Through user studies, digital model concepts of learning ecosystems, i.e. so-called LOOCs (linked open online courses), were developed. In particular, Semantic Web technologies and Linked Data concepts are considered within the context. The developed ontological models form the basis for a number of e-learning applications that show the viability of the concepts as well as a high user acceptance. Further, a formal interpreter model for CSCL (Computer-Supported Collaborative Learning) Scripts for the description of learning processes specified by using Abstract State Machines is presented.