Semi-classical Analysis For Nonlinear Schrodinger Equations: Wkb Analysis, Focal Points, Coherent States (Second Edition)


Book Description

The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent.Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrödinger equations in negative order Sobolev spaces.The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.




Semi-classical Analysis for Nonlinear Schrödinger Equations


Book Description

The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent. Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrdinger equations in negative order Sobolev spaces. The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.




Condensed Matter Field Theory


Book Description

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.




Physics Briefs


Book Description




Semiclassical Analysis


Book Description

"...A graduate level text introducing readers to semiclassical and microlocal methods in PDE." -- from xi.




Semiclassical and Stochastic Gravity


Book Description

An overview of semi-classical gravity theory and stochastic gravity as theories of quantum gravity in curved space-time.




Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets


Book Description

Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket.




Eigenfunctions of the Laplacian on a Riemannian Manifold


Book Description

Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.




Mathematics for Physics


Book Description

An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.




Notes on Quantum Mechanics


Book Description

The lecture notes presented here in facsimile were prepared by Enrico Fermi for students taking his course at the University of Chicago in 1954. They are vivid examples of his unique ability to lecture simply and clearly on the most essential aspects of quantum mechanics. At the close of each lecture, Fermi created a single problem for his students. These challenging exercises were not included in Fermi's notes but were preserved in the notes of his students. This second edition includes a set of these assigned problems as compiled by one of his former students, Robert A. Schluter. Enrico Fermi was awarded the Nobel Prize for Physics in 1938.