A Problem Seminar


Book Description

There was once a bumper sticker that read, "Remember the good old days when air was clean and sex was dirty?" Indeed, some of us are old enough to remember not only those good old days, but even the days when Math was/un(!), not the ponderous THEOREM, PROOF, THEOREM, PROOF, . . . , but the whimsical, "I've got a good prob lem. " Why did the mood change? What misguided educational philoso phy transformed graduate mathematics from a passionate activity to a form of passive scholarship? In less sentimental terms, why have the graduate schools dropped the Problem Seminar? We therefore offer "A Problem Seminar" to those students who haven't enjoyed the fun and games of problem solving. CONTENTS Preface v Format I Problems 3 Estimation Theory 11 Generating Functions 17 Limits of Integrals 19 Expectations 21 Prime Factors 23 Category Arguments 25 Convexity 27 Hints 29 Solutions 41 FORMAT This book has three parts: first, the list of problems, briefly punctuated by some descriptive pages; second, a list of hints, which are merely meant as words to the (very) wise; and third, the (almost) complete solutions. Thus, the problems can be viewed on any of three levels: as somewhat difficult challenges (without the hints), as more routine problems (with the hints), or as a textbook on "how to solve it" (when the solutions are read). Of course it is our hope that the book can be enjoyed on any of these three levels.










Selected topics in discrete mathematics: Proceedings of the Moscow Discrete Mathematics Seminar, 1972-1990


Book Description

This is a collection of translations of a variety of papers on discrete mathematics by members of the Moscow Seminar on Discrete Mathematics. This seminar, begun in 1972, was marked by active participation and intellectual ferment. Mathematicians in the USSR often encountered difficulties in publishing, so many interesting results in discrete mathematics remained unknown in the West for some years, and some are unknown even to the present day. To help fill this communication gap, this collection offers papers that were obscurely published and very hard to find. Among the topics covered here are: graph theory, network flow and multicommodity flow, linear programming and combinatorial optimization, matroid theory and submodular systems, matrix theory and combinatorics, parallel computing, complexity of algorithms, random graphs and statistical mechanics, coding theory, and algebraic combinatorics and group theory.







Mathematical Analysis


Book Description

This volume contains three articles: "Asymptotic methods in the theory of ordinary differential equations" b'y V. F. Butuzov, A. B. Vasil'eva, and M. V. Fedoryuk, "The theory of best ap proximation in Dormed linear spaces" by A. L. Garkavi, and "Dy namical systems with invariant measure" by A. 'VI. Vershik and S. A. Yuzvinskii. The first article surveys the literature on linear and non linear singular asymptotic problems, in particular, differential equations with a small parameter. The period covered by the survey is primarily 1962-1967. The second article is devoted to the problem of existence, characterization, and uniqueness of best approximations in Banach spaces. One of the chapters also deals with the problem of the convergence of positive operators, inasmuch as the ideas and methods of this theory are close to those of the theory of best ap proximation. The survey covers the literature of the decade 1958-1967. The third article is devoted to a comparatively new and rapid ly growing branch of mathematics which is closely related to many classical and modern mathematical disciplines. A survey is given of results in entropy theory, classical dynamic systems, ergodic theorems, etc. The results surveyed were primarily published during the period 1956-1967.







Mathematics of Public Health


Book Description

Curated by the Fields Institute for Research in Mathematical Sciences from their COVID-19 Math Modelling Seminars, this first in a series of volumes on the mathematics of public health allows readers to access the dominant ideas and techniques being used in this area, while indicating problems for further research. This work brings together experts in mathematical modelling from across Canada and the world, presenting the latest modelling methods as they relate to the COVID-19 pandemic. A primary aim of this book is to make the content accessible so that researchers share the core methods that may be applied elsewhere. The mathematical theories and technologies in this book can be used to support decision makers on critical issues such as projecting outbreak trajectories, evaluating public health interventions for infection prevention and control, developing optimal strategies to return to a new normal, and designing vaccine candidates and informing mass immunization program. Topical coverage includes: basic susceptible-exposed-infectious-recovered (SEIR) modelling framework modified and applied to COVID-19 disease transmission dynamics; nearcasting and forecasting for needs of critical medical resources including personal protective equipment (PPE); predicting COVID-19 mortality; evaluating effectiveness of convalescent plasma treatment and the logistic implementation challenges; estimating impact of delays in contact tracing; quantifying heterogeneity in contact mixing and its evaluation with social distancing; modelling point of care diagnostics of COVID-19; and understanding non-reporting and underestimation. Further, readers will have the opportunity to learn about current modelling methodologies and technologies for emerging infectious disease outbreaks, pandemic mitigation rapid response, and the mathematics behind them. The volume will help the general audience and experts to better understand the important role that mathematics has been playing during this on-going crisis in supporting critical decision-making by governments and public health agencies.







A Primer of Real Analytic Functions


Book Description

The subject of real analytic functions is one of the oldest in mathe matical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most work ing mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding prob lem for real analytic manifolds. We have had occasion in our collaborative research to become ac quainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real ana lytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly.