Sensorless Control of Permanent Magnet Synchronous Machine Drives


Book Description

Sensorless Control of Permanent Magnet Synchronous Machine Drives A comprehensive resource providing basic principles and state-of-the art developments in sensorless control technologies for permanent magnet synchronous machine drives Sensorless Control of Permanent Magnet Synchronous Machine Drives highlights the global research achievements over the last three decades and the sensorless techniques developed by the authors and their colleagues, and covers sensorless control techniques of permanent magnet machines, discussing issues and solutions. Many worked application examples are included to aid in practical understanding of concepts. Written by pioneering authors in the field, Sensorless Control of Permanent Magnet Synchronous Machine Drives covers topics such as: Permanent magnet brushless AC and DC drives Single three-phase, dual three-phase, and open winding machines Modern control theory based sensorless methods, covering model reference adaptive system, sliding mode observer, extended Kalman filter, and model predictive control Flux-linkage and back-EMF based methods for non-salient machines, and active flux-linkage and extended back-EMF methods for salient machines Pulsating and rotating high frequency sinusoidal and square wave signal injection methods with current or voltage response, at different reference frames, and selection of amplitude and frequency for injection signal Sensorless control techniques based on detecting third harmonic or zero-crossings of back-EMF waveforms Parasitic effects in fundamental and high frequency models, impacts on position estimation and compensation schemes, covering cross-coupling magnetic saturation, load effect, machine saliency and multiple saliencies Describing basic principles, examples, challenges, and practical solutions, Sensorless Control of Permanent Magnet Synchronous Machine Drives is a highly comprehensive resource on the subject for professionals working on electrical machines and drives, particularly permanent magnet machines, and researchers working on electric vehicles, wind power generators, household appliances, and industrial automation.




Control of Permanent Magnet Synchronous Motors


Book Description

Permanent magnet synchronous (PMS) motors stand at the forefront of electric motor development due to their energy saving capabilities and performance potential. The motors have been developed in response to mounting environmental crises and growing electricity prices, and they have enabled the emergence of motor drive applications like those found in electric and hybrid vehicles, fly by wire, and drones. Control of Permanent Magnet Synchronous Motors is a timely advancement along that path as the first comprehensive, self-contained, and thoroughly up-to-date book devoted solely to the control of PMS motors. It offers a deep and extended analysis, design, implementation, and performance evaluation of major motor control methods, including Vector, Direct Torque, Predictive, Deadbeat, and Combined Control, in a systematic and coherent manner. All major Sensorless Control and Parameter Estimation methods are also studied. The book places great emphasis on energy saving control schemes.




Sensorless Control of Permanent Magnet Synchronous Machine Drives


Book Description

A comprehensive resource providing basic principles and state-of-the art developments in sensorless control technologies for permanent magnet synchronous machine drives Sensorless Control of Permanent Magnet Synchronous Machine Drives highlights the global research achievements over the last three decades and the sensorless techniques developed by the authors and their colleagues, and covers sensorless control techniques of permanent magnet machines, discussing issues and solutions. Many worked application examples are included to aid in practical understanding of concepts. Written by two pioneering authors in the field, Sensorless Control of Permanent Magnet Synchronous Machine Drives covers sample topics such as: Permanent magnet brushless AC and DC drives Single three-phase, dual three-phase, and open winding machines Modern control theory based sensorless methods, covering model reference adaptive system, sliding mode observer, extended Kalman filter, and model predictive control Flux-linkage and back-EMF based methods for non-salient machines, and active flux-linkage and extended back-EMF methods for salient machines Pulsating and rotating high frequency sinusoidal and square wave signal injection methods with current or voltage response, at different reference frames, and selection of amplitude and frequency for injection signal Sensorless control techniques based on detecting third harmonic or zero-crossings of back-EMF waveforms Parasitic effects in fundamental and high frequency models, impacts on position estimation, and compensation schemes, covering cross-coupling magnetic saturation, load effect, machine saliency and multiple saliencies, inverter non-linearities, voltage and current harmonics, parameter asymmetries, and parameter mismatches Techniques for rotor initial position estimation, magnetic polarity detection, and transition between low and high speeds Describing basic principles, examples, challenges, and practical solutions, Sensorless Control of Permanent Magnet Synchronous Machine Drives is a highly comprehensive resource on the subject for professionals working on electrical machines and drives, particularly permanent magnet machines, and researchers working on electric vehicles, wind power generators, household appliances, and industrial automation.




Permanent Magnet Synchronous Machines


Book Description

Interest in permanent magnet synchronous machines (PMSMs) is continuously increasing worldwide, especially with the increased use of renewable energy and the electrification of transports. This book contains the successful submissions of fifteen papers to a Special Issue of Energies on the subject area of “Permanent Magnet Synchronous Machines”. The focus is on permanent magnet synchronous machines and the electrical systems they are connected to. The presented work represents a wide range of areas. Studies of control systems, both for permanent magnet synchronous machines and for brushless DC motors, are presented and experimentally verified. Design studies of generators for wind power, wave power and hydro power are presented. Finite element method simulations and analytical design methods are used. The presented studies represent several of the different research fields on permanent magnet machines and electric drives.




Control of Synchronous Motors


Book Description

Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park’s transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in industry. Both, conventional control strategies like vector control (either in the synchronous reference frame or in the rotor frame) and advanced control theories like direct control and predictive control are thoroughly presented. In this context, a significant place is reserved to sensorless control which is an important and critical issue in tomorrow’s motors.




Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives


Book Description

The book focuses on position sensorless control for PMSM drives, addressing both basic principles and experimental evaluation. It provides an in-depth study on a number of major topics, such as model-based sensorless control, saliency-based sensorless control, position estimation error ripple elimination and acoustic noise reduction. Offering a comprehensive and systematic overview of position sensorless control and practical issues it is particularly suitable for readers interested in the sensorless control techniques for PMSM drives. The book is also a valuable resource for researchers, engineers, and graduate students in fields of ac motor drives and sensorless control.







Permanent Magnet Brushless DC Motor Drives and Controls


Book Description

An advanced introduction to the simulation and hardware implementation of BLDC motor drives A thorough reference on the simulation and hardware implementation of BLDC motor drives, this book covers recent advances in the control of BLDC motor drives, including intelligent control, sensorless control, torque ripple reduction and hardware implementation. With the guidance of the expert author team, readers will understand the principle, modelling, design and control of BLDC motor drives. The advanced control methods and new achievements of BLDC motor drives, of interest to more advanced readers, are also presented. Focuses on the control of PM brushless DC motors, giving readers the foundations to the topic that they can build on through more advanced reading Systematically guides readers through the subject, introducing basic operational principles before moving on to advanced control algorithms and implementations Covers special issues, such as sensorless control, intelligent control, torque ripple reduction and hardware implementation, which also have applications to other types of motors Includes presentation files with lecture notes and Matlab 7 coding on a companion website for the book




Permanent Magnet Synchronous and Brushless DC Motor Drives


Book Description

Despite two decades of massive strides in research and development on control strategies and their subsequent implementation, most books on permanent magnet motor drives still focus primarily on motor design, providing only elementary coverage of control and converters. Addressing that gap with information that has largely been disseminated only in journals and at conferences, Permanent Magnet Synchronous and Brushless DC Motor Drives is a long-awaited comprehensive overview of power electronic converters for permanent magnet synchronous machines and control strategies for variable-speed operation. It introduces machines, power devices, inverters, and control, and addresses modeling, implementation, control strategies, and flux weakening operations, as well as parameter sensitivity, and rotor position sensorless control. Suitable for both industrial and academic audiences, this book also covers the simulation, low cost inverter topologies, and commutation torque ripple of PM brushless DC motor drives. Simulation of the motor drives system is illustrated with MATLAB® codes in the text. This book is divided into three parts—fundamentals of PM synchronous and brushless dc machines, power devices, inverters; PM synchronous motor drives, and brushless dc motor drives. With regard to the power electronics associated with these drive systems, the author: Explores use of the standard three-phase bridge inverter for driving the machine, power factor correction, and inverter control Introduces space vector modulation step by step and contrasts with PWM Details dead time effects in the inverter, and its compensation Discusses new power converter topologies being considered for low-cost drive systems in PM brushless DC motor drives This reference is dedicated exclusively to PM ac machines, with a timely emphasis on control and standard, and low-cost converter topologies. Widely used for teaching at the doctoral level and for industrial audiences both in the U.S. and abroad, it will be a welcome addition to any engineer’s library.




Modeling, Simulation and Control of Electrical Drives


Book Description

Thanks to advances in power electronics device design, digital signal processing technologies and energy efficient algorithms, ac motors have become the backbone of the power electronics industry. Variable frequency drives (VFD's) together with IE3 and IE4 induction motors, permanent magnet motors, and synchronous reluctance motors have emerged as a new generation of greener high-performance technologies, which offer improvements to process and speed control, product quality, energy consumption and diagnostics analytics.