Sensors and Probes for Bioimaging


Book Description

Sensors and Probes for Bioimaging A fulsome exploration of the history, design, and application of bioimaging probes and sensors In Sensors and Probes for Bioimaging, distinguished researcher Professor Young-Tae Chang and Professor Nam-Young Kang deliver a comprehensive discussion of bioimaging achieved with sensors and probes. In the book, readers will find a complete discussion of the history of colorful sensors and probes, probe design and the mechanisms of staining, as well as cell and tissue application and whole-body imaging. You’ll learn how probes can be used, how to choose and use a variety of probes, and new directions in research and application in the area of sensors and probes for bioimaging. Readers will also find: A thorough introduction to bioimaging, as well as discussions of chemical sensors and probes used in bioimaging Comprehensive explorations of organelle and cell selective probes, as well as discussions of a model for organelle selectivity Practical discussions of tissue selective probes and whole-body imaging Fulsome treatments of imaging for biological function and for the diagnosis of disease, including cancer and Alzheimer’s imaging Perfect for chemical biologists, analytical chemists, biochemists, and materials scientists, Sensors and Probes for Bioimaging will also earn a place in the libraries of clinical chemists and advanced undergraduate students, graduate students, and professionals working in the bioimaging and sensor industry.




Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide


Book Description

This book puts hydrogen sulfide in context with other gaseous mediators such as nitric oxide and carbon monoxide, reviews the available mechanisms for its biosynthesis and describes its physiological and pathophysiological roles in a wide variety of disease states. Hydrogen sulfide has recently been discovered to be a naturally occurring gaseous mediator in the body. Over a relatively short period of time this evanescent gas has been revealed to play key roles in a range of physiological processes including control of blood vessel caliber and hence blood pressure and in the regulation of nerve function both in the brain and the periphery. Disorders concerning the biosynthesis or activity of hydrogen sulfide may also predispose the body to disease states such as inflammation, cardiovascular and neurological disorders. Interest in this novel gas has been high in recent years and many research groups worldwide have described its individual biological effects. Moreover, medicinal chemists are beginning to synthesize novel organic molecules that release this gas at defined rates with a view to exploiting these new compounds for therapeutic benefit.




Fluorescent Probes and Sensors


Book Description

This book is a printed edition of the Special Issue "Fluorescent Probes and Sensors" that was published in Sensors




The Molecular Probes Handbook


Book Description

The most complete fluorescent labeling and detection reference available, The Molecular Probes HandbookA Guide to Fluorescent Probes and Labeling Technologies contains over 3,000 technology solutions representing a wide range of biomolecular labeling and detection reagents. The significantly revised 11th Edition features extensive references, reorganized content, and new technical notes and product highlights.







Advanced Concepts in Fluorescence Sensing


Book Description

Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 and 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future.







Cucurbiturils and Related Macrocycles


Book Description

This book provides a complete overview of cucurbituril chemistry, covering fundamental aspects including history, synthesis and host-guest chemistry.




Disposable And Flexible Chemical Sensors And Biosensors Made With Renewable Materials


Book Description

Sensors for measuring and detecting chemical and biological substances are comprehensively used and are, for the most part, unobtrusive. They can help monitor our health through alerting us to chemical or biological changes in our bodies, our environment through checking air quality or pollution levels and they can contribute towards a more sustainable future. Polymer-based sensors are the subject of much attention due to their ability to collect molecules on their flexible sensory surfaces. However, most petroleum-based polymers are not renewable, leading to problems of waste-disposal. By using renewable materials, such as paper, cotton or starch, these problems can be overcome. This book reviews the current state-of-play in renewable-material-based chemical sensors and biosensors, and suggests applications in industry, environment and biomedicine.




Introduction to Fluorescence Sensing


Book Description

Fluorescence is the most popular technique in chemical and biological sensing and this book provides systematic knowledge of basic principles in the design of fluorescence sensing and imaging techniques together with critical analysis of recent developments. Its ultimate sensitivity, high temporal and spatial resolution and versatility enables high resolution imaging within living cells. It develops rapidly in the directions of constructing new molecular recognition units, new fluorescence reporters and in improving sensitivity of response, up to the detection of single molecules. Its application areas range from the control of industrial processes to environmental monitoring and clinical diagnostics. Being a guide for students and young researchers, it also addresses professionals involved in basic and applied research. Making a strong link between education, research and product development, this book discusses prospects for future progress.