Shape Memory Polymer-Derived Nanocomposites


Book Description

Shape Memory Polymer derived Nanocomposites: Features to Cutting-Edge Advancements summarizes the up-to-date of fundamentals and applications of the shape memory polymer derived nanocomposites. Design and fabrication of shape memory polymeric nanocomposites have gained significant importance in the field of up-to-date nano/materials science and technology. In recent times, the shape memory polymers and nanocomposites have attracted considerable academic and industrial research interest. This feature book will present a state-of-the-art assessment on the versatile shape memory materials. The flexibility, durability, heat stability, shape deformability, and shape memory features of these polymers have shown dramatic improvements with the nanofiller addition. Appropriate choice of the stimuli-responsive polymer, nanofiller type and content, and fabrication strategies may lead to enhanced physicochemical features and stimuli-responsive performance. Several successful stimuli-responsive effects have been achieved in the shape memory nanocomposites such as thermo-responsive, electro-active, photo-active, water/moisture-responsive, pH-sensitive, etc. Consequently, the shape memory polymer based nanocomposites have found applications in high-tech devices and applications. This book initially offers a futuristic knowledge regarding indispensable features of the shape memory polymeric nanocomposites. Afterwards, the essential categories of the stimuli-responsive polymer-based nanocomposites have been discussed in terms of recent scientific literature. Subsequent sections of this book are dedicated to the potential of shape memory polymer-based nanocomposite in various technical fields. Significant application areas have been identified as foam materials, aerospace, radiation shielding, sensor, actuator, supercapacitor, electronics and biomedical relevance. The book chapters also point towards the predictable challenges and future opportunities in the field of shape memory nanocomposites. - Provides the essentials of shape memory polymeric nanocomposites - Includes important categories of shape memory nanocomposites - Presents current technological applications of shape memory polymers and derived nanocomposite in sponges, aerospace, EMI shielding, ionizing radiation shielding, sensors, actuator, supercapacitor, electronics, and biomedical fields




Shape Memory Polymers for Biomedical Applications


Book Description

Shape memory polymers (SMPs) are an emerging class of smart polymers which give scientists the ability to process the material into a permanent state and predefine a second temporary state which can be triggered by different stimuli. The changing chemistries of SMPs allows scientists to tailor important properties such as strength, stiffness, elasticity and expansion rate. Consequently SMPs are being increasingly used and developed for minimally invasive applications where the material can expand and develop post insertion. This book will provide readers with a comprehensive review of shape memory polymer technologies. Part 1 will discuss the fundamentals and mechanical aspects of SMPs. Chapters in part 2 will look at the range of technologies and materials available for scientific manipulation whilst the final set of chapters will review applications. - Reviews the fundamentals of shape memory polymers with chapters focussing on the basic principles of the materials - Comprehensive coverage of design and mechanical aspects of SMPs - Expert analysis of the range of technologies and materials available for scientific manipulation




Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements


Book Description

Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements introduces the innovative applications of polymeric materials based on nanocellulose, and covers extraction methods, functionalization approaches, and assembly methods to enable these applications. The book presents the state-of-the-art of this novel nano-filler and how it enables new applications in many different sectors, beyond existing products. With a focus on application of nano-cellulose based polymers with multifunctional activity, the book explains the methodology of nano-cellulose extraction and production and shows the potential performance benefits of these particular nanostructured polymers, for applications across different sectors, including food active packaging, energy-photovoltaics, biomedical, and filtration. The book describes how the different methodologies, functionalization, and organization at the nano-scale level could contribute to the design of required properties at macro level. The book studies the interactions between the main nano-filler with other active systems and how this interaction enables multi-functionality in the produced materials. The book is an indispensable resource for the growing number of scientists and engineers interested in the preparation and novel applications of nano-cellulose, and for industrial scientists active in formulation and fabrication of polymer products based on renewable resources. - Provides insight into nanostructure formation science, and processing of polymeric materials and their characterization - Offers a strong analysis of real industry needs for designing the materials - Provides a well-balanced structure, including a light introduction of basic knowledge on extraction methods, functionalization approaches, and assembling focused to applications - Describes how different methodologies, functionalization, and organization at the nano-scale level could contribute to the design of required properties at macro level




Shape Memory Polymers


Book Description

Shape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing. This book provides the latest advanced information of on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP. The basic fundamentals of SMP, including shape-memory mechanisms and mechanics are described. This will aid reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field. The book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well. This book should prove to be extremely useful for academics, R&D managers, researcher scientists, engineers, and all others related to the SMP research.




Shape-Memory Polymer Device Design


Book Description

Shape-Memory Polymer Device Design discusses the latest shape-memory polymers and the ways they have started to transition out of the academic laboratory and into devices and commercial products. Safranski introduces the properties of shape-memory polymers and presents design principles for designing and manufacturing, providing a guide for the R&D engineer/scientist and design engineer to add the shape memory effect of polymers into their design toolbox. This is the first book to focus on applying basic science knowledge to design practical devices, introducing the concept of shape-memory polymers, the history of their use, and the range of current applications. It details the specific design principles for working with shape-memory polymers that don't often apply to mechanically inactive materials and products. Material selection is thoroughly discussed because chemical structure and thermo-mechanical properties are intrinsically linked to shape-memory performance. Further chapters discuss programming the temporary shape and recovery through a variety of activation methods with real world examples. Finally, current devices across a variety of markets are highlighted to show the breadth of possible applications. - Demystifies shape-memory polymers, providing a guide to their properties and design principles - Explores a range of current and emerging applications across sectors, including biomedical, aerospace/automotive, and consumer goods - Places shape-memory polymers in the design toolkit of R&D scientists/engineers and design engineers - Discusses material selection in-depth because chemical structure and thermo-mechanical properties are intrinsically linked to shape-memory performance




Polyurethane Shape Memory Polymers


Book Description

Shape memory polymers (SMPs) are some of the most important and valuable engineering materials developed in the last 25 years. These fascinating materials demonstrate remarkably versatile properties-including capacity for actuation and stimulus responsiveness-that are enabling technologists to develop applications used to explore everything from th




Nanotechnology in Textiles


Book Description

In recent times, polymer nanocomposites have attracted a great deal of scientific interest due to their unique advantages over conventional plastic materials, such as superior strength, modulus, thermal stability, thermal and electrical conductivity, and gas barrier. They are finding real and fast-growing applications in wide-ranging fields such as automotive, aerospace, electronics, packaging, and sports. This book focuses on the development of polymer nanocomposites as an advanced material for textile applications, such as fibers, coatings, and nanofibers. It compiles and details cutting-edge research in the science and nanotechnology of textiles with special reference to polymer nanocomposites in the form of invited chapters from scientists and subject experts from various institutes from all over the world. They include authors who are actively involved in the research and development of polymer nanocomposites with a wide range of functions—including antimicrobial, flame-retardant, gas barrier, shape memory, sensor, and energy-scavenging—as well as medical applications, such as tissue engineering and wound dressings, to create a new range of smart and intelligent textiles. Edited by Mangala Joshi, a prominent nanotechnology researcher at the premier Indian Institute of Technology, Delhi, India, this book will appeal to anyone involved in nanotechnology, nanocomposites, advanced materials, polymers, fibers and textiles, and technical textiles.




Shape Memory Polymers, Blends and Composites


Book Description

This book explores the recent advances in the field of shape memory polymers, whose ease of manufacturing and wide range of potential applications have spurred interest in the field. The book presents details about the synthesis, processing, characterization, and applications of shape memory polymers, their blends and composites. It provides a correlation of physical properties of shape memory polymers with macro, micro and nano structures. The contents of this book will be of interest to researchers across academia and industry.




Polymer Nanocomposite-Based Smart Materials


Book Description

Polymer Nanocomposite-Based Smart Materials: From Synthesis to Application provides a broad, comprehensive review on all major categories of smart materials and their preparation routes. The main application fields and properties for these diverse types of smart polymer-based composite and nanocomposite materials are also discussed. Chapters on modeling methods and simulation look at the physical or chemical change response that is introduced by the effect of changing environmental conditions such as pH, temperature, mechanical force and light. Written by scholars and experts from around the globe, the book covers key aspects, such as synthesis, processing and applications of polymer and nanocomposite-based smart materials.




Materials


Book Description

Presents a fully interdisciplinary approach with a stronger emphasis on polymers and composites than traditional materials books Materials science and engineering is an interdisciplinary field involving the properties of matter and its applications to various areas of science and engineering. Polymer materials are often mixed with inorganic materials to enhance their mechanical, electrical, thermal, and physical properties. Materials: Introduction and Applications addresses a gap in the existing textbooks on materials science. This book focuses on three Units. The first, Foundations, includes basic materials topics from Intermolecular Forces and Thermodynamics and Phase Diagrams to Crystalline and Non-Crystalline Structures. The second Units, Materials, goes into the details of many materials including Metals, Ceramics, Organic Raw Materials, Polymers, Composites, Biomaterials, and Liquid Crystals and Smart Materials. The third and final unit details Behavior and Properties including Rheological, Mechanical, Thermophysical, Color and Optical, Electrical and Dielectric, Magnetic, Surface Behavior and Tribology, Materials, Environment and Sustainability, and Testing of Materials. Materials: Introduction and Applications features: Basic and advanced Materials concepts Interdisciplinary information that is otherwise scattered consolidated into one work Links to everyday life application like electronics, airplanes, and dental materials Certain topics to be discussed in this textbook are more advanced. These will be presented in shaded gray boxes providing a two-level approach. Depending on whether you are a student of Mechanical Engineering, Electrical Engineering, Engineering Technology, MSE, Chemistry, Physics, etc., you can decide for yourself whether a topic presented on a more advanced level is not important for you—or else essential for you given your professional profile Witold Brostow is Regents Professor of Materials Science and Engineering at the University of North Texas. He is President of the International Council on Materials Education and President of the Scientific Committee of the POLYCHAR World Forum on Advanced Material (42 member countries). He has three honorary doctorates and is a Member of the European Academy of Sciences, Member of the National Academy of Sciences of Mexico, Foreign Member of the National Academy of Engineering of Georgia in Tbilisi and Fellow of the Royal Society of Chemistry in London. His publications have been cited more than 7200 times. Haley Hagg Lobland is the Associate Director of LAPOM at the University of North Texas. She is a Member of the POLYCHAR Scientific Committeee. She has received awards for her research presented at conferences in: Buzios, Rio de Janeiro, Brazil; NIST, Frederick, Maryland; Rouen, France; and Lviv, Ukraine. She has lectured in a number of countries including Poland and Spain. Her publications include joint ones with colleagues in Egypt, Georgia, Germany, India, Israel, Mexico, Poland, Turkey and United Kingdom.